1
0
mirror of https://github.com/DanilaFe/abacus synced 2024-11-18 08:29:33 -08:00
Abacus/src/org/nwapw/abacus/plugin/StandardPlugin.java

167 lines
5.9 KiB
Java
Raw Normal View History

package org.nwapw.abacus.plugin;
2017-07-25 21:57:14 -07:00
import org.nwapw.abacus.function.Function;
import org.nwapw.abacus.number.NaiveNumber;
import org.nwapw.abacus.number.NumberInterface;
import java.util.function.BiFunction;
2017-07-26 10:10:37 -07:00
/**
* The plugin providing standard functions such as addition and subtraction to
* the calculator.
*/
public class StandardPlugin extends Plugin {
public StandardPlugin(PluginManager manager) {
super(manager);
}
@Override
public void load() {
registerFunction("+", new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length >= 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface sum = params[0];
for(int i = 1; i < params.length; i++){
sum = sum.add(params[i]);
}
return sum;
}
});
registerFunction("-", new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return params[0].subtract(params[1]);
}
});
registerFunction("*", new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length >= 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface product = params[0];
for(int i = 1; i < params.length; i++){
product = product.multiply(params[i]);
}
return product;
}
});
registerFunction("/", new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return params[0].divide(params[1]);
}
});
2017-07-25 11:12:25 -07:00
registerFunction("!", new Function() {
2017-07-25 11:12:25 -07:00
@Override
protected boolean matchesParams(NumberInterface[] params) {
2017-07-25 11:12:25 -07:00
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
if(params[0].signum() == 0){
return (new NaiveNumber(1)).promoteTo(params[0].getClass());
}
NumberInterface factorial = params[0];
NumberInterface multiplier = params[0];
2017-07-25 11:12:25 -07:00
//It is necessary to later prevent calls of factorial on anything but non-negative integers.
while((multiplier = multiplier.subtract(NaiveNumber.ONE.promoteTo(multiplier.getClass()))).signum() == 1){
2017-07-25 11:12:25 -07:00
factorial = factorial.multiply(multiplier);
}
return factorial;
}
});
registerFunction("exp", new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return sumSeries(params[0], StandardPlugin.this::getExpSeriesTerm, getNTermsExp(getMaxError(params[0]), params[0]));
}
});
}
/**
* Returns the nth term of the Taylor series (centered at 0) of e^x
* @param n the term required (n >= 0).
* @param x the real number at which the series is evaluated.
* @return
*/
private NumberInterface getExpSeriesTerm(int n, NumberInterface x){
return x.intPow(n).divide(this.getFunction("!").apply((new NaiveNumber(n)).promoteTo(x.getClass())));
}
/**
* Returns the number of terms needed to evaluate the exponential function (at x)
* such that the error is at most maxError.
* @param maxError Maximum error permissible (This should probably be positive.)
* @param x where the function is evaluated.
* @return
*/
private int getNTermsExp(NumberInterface maxError, NumberInterface x){
//We need n such that x^(n+2) <= (n+1)! * maxError
//The variables LHS and RHS refer to the above inequality.
int n = 0;
NumberInterface LHS = x.intPow(2), RHS = maxError;
while(LHS.compareTo(RHS) > 0){
n++;
LHS = LHS.multiply(x);
RHS = RHS.multiply(new NaiveNumber(n).promoteTo(RHS.getClass()));
}
return n;
}
/**
* Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x.
* @param x the value at which the series is evaluated.
* @param nthTermFunction the function that returns the nth term of the series, in the format term(x, n).
* @param n the number of terms in the partial sum.
* @return the value of the partial sum that has the same class as x.
*/
private NumberInterface sumSeries(NumberInterface x, BiFunction<Integer, NumberInterface, NumberInterface> nthTermFunction, int n){
NumberInterface sum = NaiveNumber.ZERO.promoteTo(x.getClass());
for(int i = 0; i <= n; i++){
sum = sum.add(nthTermFunction.apply(i, x));
}
return sum;
}
/**
* Returns the maximum error based on the precision of the class of number.
* @param number Any instance of the NumberInterface in question (should return an appropriate precision).
* @return
*/
private NumberInterface getMaxError(NumberInterface number){
return (new NaiveNumber(10)).promoteTo(number.getClass()).intPow(-number.precision());
}
}