1
0
mirror of https://github.com/DanilaFe/abacus synced 2024-11-16 07:33:09 -08:00
Abacus/src/main/java/org/nwapw/abacus/plugin/StandardPlugin.java

549 lines
22 KiB
Java
Raw Normal View History

package org.nwapw.abacus.plugin;
2017-07-25 21:57:14 -07:00
import org.nwapw.abacus.function.Function;
import org.nwapw.abacus.function.Operator;
import org.nwapw.abacus.function.OperatorAssociativity;
2017-07-28 10:26:25 -07:00
import org.nwapw.abacus.function.OperatorType;
import org.nwapw.abacus.number.NaiveNumber;
import org.nwapw.abacus.number.NumberInterface;
import org.nwapw.abacus.number.PreciseNumber;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.function.BiFunction;
2017-07-26 10:10:37 -07:00
/**
* The plugin providing standard functions such as addition and subtraction to
* the calculator.
*/
public class StandardPlugin extends Plugin {
private static HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>> factorialLists = new HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>>();
/**
* The addition operator, +
*/
public static final Operator OP_ADD = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 0, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length >= 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface sum = params[0];
2017-07-30 21:11:32 -07:00
for (int i = 1; i < params.length; i++) {
sum = sum.add(params[i]);
}
return sum;
}
});
/**
* The subtraction operator, -
*/
public static final Operator OP_SUBTRACT = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 0, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return params[0].subtract(params[1]);
}
});
2017-08-02 11:26:59 -07:00
/**
* The negation operator, -
*/
public static final Operator OP_NEGATE = new Operator(OperatorAssociativity.LEFT, OperatorType.UNARY_PREFIX, 0, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return params[0].negate();
}
});
/**
* The multiplication operator, *
*/
2017-07-30 21:11:32 -07:00
public static final Operator OP_MULTIPLY = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 1, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length >= 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface product = params[0];
2017-07-30 21:11:32 -07:00
for (int i = 1; i < params.length; i++) {
product = product.multiply(params[i]);
}
return product;
}
});
/**
* The division operator, /
*/
2017-07-30 21:11:32 -07:00
public static final Operator OP_DIVIDE = new Operator(OperatorAssociativity.LEFT, OperatorType.BINARY_INFIX, 1, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2 && params[1].compareTo(NaiveNumber.ZERO.promoteTo(params[1].getClass())) != 0;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
2017-08-02 11:28:49 -07:00
return params[0].divide(params[1]);
}
});
/**
* The factorial operator, !
*/
public static final Operator OP_FACTORIAL = new Operator(OperatorAssociativity.RIGHT, OperatorType.UNARY_POSTFIX, 0, new Function() {
//private HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>> storedList = new HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>>();
@Override
protected boolean matchesParams(NumberInterface[] params) {
2017-08-04 10:33:55 -07:00
return params.length == 1
&& params[0].fractionalPart().compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) == 0
&& params[0].signum() >= 0;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
2017-07-30 21:11:32 -07:00
if (params[0].signum() == 0) {
return (new NaiveNumber(1)).promoteTo(params[0].getClass());
}
NumberInterface factorial = params[0];
NumberInterface multiplier = params[0];
//It is necessary to later prevent calls of factorial on anything but non-negative integers.
2017-07-30 21:11:32 -07:00
while ((multiplier = multiplier.subtract(NaiveNumber.ONE.promoteTo(multiplier.getClass()))).signum() == 1) {
factorial = factorial.multiply(multiplier);
2017-07-25 11:12:25 -07:00
}
return factorial;
/*if(!storedList.containsKey(params[0].getClass())){
storedList.put(params[0].getClass(), new ArrayList<NumberInterface>());
storedList.get(params[0].getClass()).add(NaiveNumber.ONE.promoteTo(params[0].getClass()));
storedList.get(params[0].getClass()).add(NaiveNumber.ONE.promoteTo(params[0].getClass()));
}*/
}
});
/**
* The caret / pow operator, ^
*/
2017-07-30 21:12:50 -07:00
public static final Operator OP_CARET = new Operator(OperatorAssociativity.RIGHT, OperatorType.BINARY_INFIX, 2, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return FUNCTION_EXP.apply(FUNCTION_LN.apply(params[0]).multiply(params[1]));
}
});
/**
* The absolute value function, abs(-3) = 3
*/
public static final Function FUNCTION_ABS = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return params[0].multiply((new NaiveNumber(params[0].signum())).promoteTo(params[0].getClass()));
}
};
/**
2017-07-31 10:28:39 -07:00
* The exponential function, exp(1) = e^1 = 2.71...
*/
public static final Function FUNCTION_EXP = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface maxError = getMaxError(params[0]);
int n = 0;
if(params[0].signum() <= 0){
NumberInterface currentTerm = NaiveNumber.ONE.promoteTo(params[0].getClass()), sum = currentTerm;
while(FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0){
n++;
currentTerm = currentTerm.multiply(params[0]).divide((new NaiveNumber(n)).promoteTo(params[0].getClass()));
sum = sum.add(currentTerm);
}
return sum;
}
else{
//We need n such that x^(n+1) * 3^ceil(x) <= maxError * (n+1)!.
//right and left refer to lhs and rhs in the above inequality.
NumberInterface sum = NaiveNumber.ONE.promoteTo(params[0].getClass());
NumberInterface nextNumerator = params[0];
NumberInterface left = params[0].multiply((new NaiveNumber(3)).promoteTo(params[0].getClass()).intPow(params[0].ceiling().intValue())), right = maxError;
do{
sum = sum.add(nextNumerator.divide(factorial(params[0].getClass(), n+1)));
n++;
nextNumerator = nextNumerator.multiply(params[0]);
left = left.multiply(params[0]);
NumberInterface nextN = (new NaiveNumber(n+1)).promoteTo(params[0].getClass());
right = right.multiply(nextN);
//System.out.println(left + ", " + right);
}
while(left.compareTo(right) > 0);
2017-07-31 23:09:11 -07:00
//System.out.println(n+1);
return sum;
}
}
};
/**
* The natural log function.
*/
public static final Function FUNCTION_LN = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1 && params[0].compareTo(NaiveNumber.ZERO.promoteTo(params[0].getClass())) > 0;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface param = params[0];
int powersOf2 = 0;
2017-07-30 21:11:32 -07:00
while (FUNCTION_ABS.apply(param.subtract(NaiveNumber.ONE.promoteTo(param.getClass()))).compareTo((new NaiveNumber(0.1)).promoteTo(param.getClass())) >= 0) {
if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() == 1) {
param = param.divide(new NaiveNumber(2).promoteTo(param.getClass()));
powersOf2++;
2017-07-30 21:11:32 -07:00
if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() != 1) {
break;
//No infinite loop for you.
}
2017-07-30 21:11:32 -07:00
} else {
param = param.multiply(new NaiveNumber(2).promoteTo(param.getClass()));
powersOf2--;
if (param.subtract(NaiveNumber.ONE.promoteTo(param.getClass())).signum() != -1) {
break;
//No infinite loop for you.
}
}
}
return getLog2(param).multiply((new NaiveNumber(powersOf2)).promoteTo(param.getClass())).add(getLogPartialSum(param));
}
/**
* Returns the partial sum of the Taylor series for logx (around x=1).
* Automatically determines the number of terms needed based on the precision of x.
* @param x value at which the series is evaluated. 0 < x < 2. (x=2 is convergent but impractical.)
* @return the partial sum.
*/
2017-07-30 21:11:32 -07:00
private NumberInterface getLogPartialSum(NumberInterface x) {
NumberInterface maxError = getMaxError(x);
x = x.subtract(NaiveNumber.ONE.promoteTo(x.getClass())); //Terms used are for log(x+1).
2017-07-31 12:39:56 -07:00
NumberInterface currentNumerator = x, currentTerm = x, sum = x;
int n = 1;
2017-07-30 21:11:32 -07:00
while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0) {
n++;
2017-07-31 12:39:56 -07:00
currentNumerator = currentNumerator.multiply(x).negate();
currentTerm = currentNumerator.divide(new NaiveNumber(n).promoteTo(x.getClass()));
sum = sum.add(currentTerm);
}
return sum;
}
/**
* Returns natural log of 2 to the required precision of the class of number.
* @param number a number of the same type as the return type. (Used for precision.)
* @return the value of log(2) with the appropriate precision.
*/
2017-07-30 21:11:32 -07:00
private NumberInterface getLog2(NumberInterface number) {
NumberInterface maxError = getMaxError(number);
//NumberInterface errorBound = (new NaiveNumber(1)).promoteTo(number.getClass());
//We'll use the series \sigma_{n >= 1) ((1/3^n + 1/4^n) * 1/n)
//In the following, a=1/3^n, b=1/4^n, c = 1/n.
//a is also an error bound.
NumberInterface a = (new NaiveNumber(1)).promoteTo(number.getClass()), b = a, c = a;
NumberInterface sum = NaiveNumber.ZERO.promoteTo(number.getClass());
int n = 0;
2017-07-30 21:11:32 -07:00
while (a.compareTo(maxError) >= 1) {
n++;
a = a.divide((new NaiveNumber(3)).promoteTo(number.getClass()));
b = b.divide((new NaiveNumber(4)).promoteTo(number.getClass()));
c = NaiveNumber.ONE.promoteTo(number.getClass()).divide((new NaiveNumber(n)).promoteTo(number.getClass()));
sum = sum.add(a.add(b).multiply(c));
}
return sum;
}
};
/**
* The square root function.
*/
public static final Function FUNCTION_SQRT = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
2017-07-27 13:17:22 -07:00
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return OP_CARET.getFunction().apply(params[0], ((new NaiveNumber(0.5)).promoteTo(params[0].getClass())));
}
};
2017-07-27 13:47:51 -07:00
/**
* The sine function (the argument is interpreted in radians).
*/
public final Function functionSin = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface pi = getPi(params[0].getClass());
NumberInterface twoPi = pi.multiply(new NaiveNumber(2).promoteTo(pi.getClass()));
NumberInterface theta = getSmallAngle(params[0], pi);
//System.out.println(theta);
if(theta.compareTo(pi.multiply(new NaiveNumber(1.5).promoteTo(twoPi.getClass()))) >= 0){
theta = theta.subtract(twoPi);
}
else if(theta.compareTo(pi.divide(new NaiveNumber(2).promoteTo(pi.getClass()))) > 0){
theta = pi.subtract(theta);
}
//System.out.println(theta);
return sinTaylor(theta);
}
};
public final Function functionCos = new Function() {
2017-08-03 09:52:56 -07:00
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionSin.apply(getPi(params[0].getClass()).divide(new NaiveNumber(2).promoteTo(params[0].getClass()))
2017-08-03 09:52:56 -07:00
.subtract(params[0]));
}
};
public final Function functionTan = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionSin.apply(params[0]).divide(functionCos.apply(params[0]));
}
};
public final Function functionSec = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionCos.apply(params[0]));
}
};
public final Function functionCsc = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionSin.apply(params[0]));
}
};
public final Function functionCot = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionCos.apply(params[0]).divide(functionCos.apply(params[0]));
}
};
/**
* The implementation for double-based naive numbers.
*/
public static final NumberImplementation IMPLEMENTATION_NAIVE = new NumberImplementation(NaiveNumber.class, 0) {
@Override
public NumberInterface instanceForString(String string) {
return new NaiveNumber(string);
}
@Override
public NumberInterface instanceForPi() {
return new NaiveNumber(Math.PI);
}
};
/**
* The implementation for the infinite-precision BigDecimal.
*/
public static final NumberImplementation IMPLEMENTATION_PRECISE = new NumberImplementation(PreciseNumber.class, 0) {
@Override
public NumberInterface instanceForString(String string) {
return new PreciseNumber(string);
}
@Override
public NumberInterface instanceForPi() {
NumberInterface C = FUNCTION_SQRT.apply(new PreciseNumber("10005")).multiply(new PreciseNumber("426880"));
NumberInterface M = PreciseNumber.ONE;
NumberInterface L = new PreciseNumber("13591409");
NumberInterface X = M;
NumberInterface sum = L;
int termsNeeded = C.getMaxPrecision()/13 + 1;
NumberInterface lSummand = new PreciseNumber("545140134");
NumberInterface xMultiplier = new PreciseNumber("262537412")
.multiply(new PreciseNumber("1000000000"))
.add(new PreciseNumber("640768000"))
.negate();
for(int i = 0; i < termsNeeded; i++){
M = M
.multiply(new NaiveNumber(12*i+2).promoteTo(PreciseNumber.class))
.multiply(new NaiveNumber(12*i+6).promoteTo(PreciseNumber.class))
.multiply(new NaiveNumber(12*i+10).promoteTo(PreciseNumber.class))
.divide(new NaiveNumber(Math.pow(i+1,3)).promoteTo(PreciseNumber.class));
L = L.add(lSummand);
X = X.multiply(xMultiplier);
sum = sum.add(M.multiply(L).divide(X));
}
return C.divide(sum);
}
};
public StandardPlugin(PluginManager manager) {
super(manager);
}
/**
* Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x.
2017-07-30 21:11:32 -07:00
*
* @param x the value at which the series is evaluated.
* @param nthTermFunction the function that returns the nth term of the series, in the format term(x, n).
2017-07-30 21:11:32 -07:00
* @param n the number of terms in the partial sum.
* @return the value of the partial sum that has the same class as x.
*/
2017-07-30 21:11:32 -07:00
private static NumberInterface sumSeries(NumberInterface x, BiFunction<Integer, NumberInterface, NumberInterface> nthTermFunction, int n) {
NumberInterface sum = NaiveNumber.ZERO.promoteTo(x.getClass());
2017-07-30 21:11:32 -07:00
for (int i = 0; i <= n; i++) {
sum = sum.add(nthTermFunction.apply(i, x));
}
return sum;
}
/**
* Returns the maximum error based on the precision of the class of number.
2017-07-30 21:11:32 -07:00
*
* @param number Any instance of the NumberInterface in question (should return an appropriate precision).
2017-07-27 14:06:25 -07:00
* @return the maximum error.
*/
2017-07-30 21:11:32 -07:00
private static NumberInterface getMaxError(NumberInterface number) {
return (new NaiveNumber(10)).promoteTo(number.getClass()).intPow(-number.getMaxPrecision());
}
2017-07-30 21:11:32 -07:00
@Override
public void onEnable() {
registerNumberImplementation("naive", IMPLEMENTATION_NAIVE);
registerNumberImplementation("precise", IMPLEMENTATION_PRECISE);
2017-07-30 21:11:32 -07:00
registerOperator("+", OP_ADD);
registerOperator("-", OP_SUBTRACT);
2017-08-02 11:26:59 -07:00
registerOperator("`", OP_NEGATE);
2017-07-30 21:11:32 -07:00
registerOperator("*", OP_MULTIPLY);
registerOperator("/", OP_DIVIDE);
registerOperator("^", OP_CARET);
registerOperator("!", OP_FACTORIAL);
registerFunction("abs", FUNCTION_ABS);
registerFunction("exp", FUNCTION_EXP);
registerFunction("ln", FUNCTION_LN);
registerFunction("sqrt", FUNCTION_SQRT);
registerFunction("sin", functionSin);
registerFunction("cos", functionCos);
registerFunction("tan", functionTan);
registerFunction("sec", functionSec);
registerFunction("csc", functionCsc);
registerFunction("cot", functionCot);
2017-07-30 21:11:32 -07:00
}
@Override
public void onDisable() {
}
/**
* A factorial function that uses memoization for each number class; it efficiently
* computes factorials of non-negative integers.
* @param numberClass type of number to return.
* @param n non-negative integer.
* @return a number of numClass with value n factorial.
*/
public static NumberInterface factorial(Class<? extends NumberInterface> numberClass, int n){
if(!factorialLists.containsKey(numberClass)){
2017-08-02 11:26:59 -07:00
factorialLists.put(numberClass, new ArrayList<>());
factorialLists.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
factorialLists.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
}
ArrayList<NumberInterface> list = factorialLists.get(numberClass);
if(n >= list.size()){
while(list.size() < n + 16){
list.add(list.get(list.size()-1).multiply(new NaiveNumber(list.size()).promoteTo(numberClass)));
}
}
return list.get(n);
}
/**
* Returns the value of the Taylor series for sin (centered at 0) at x.
* @param x where the series is evaluated.
* @return the value of the series
*/
private static NumberInterface sinTaylor(NumberInterface x){
NumberInterface power = x, multiplier = x.multiply(x).negate(), currentTerm = x, sum = x;
NumberInterface maxError = getMaxError(x);
int n = 1;
do{
n += 2;
power = power.multiply(multiplier);
currentTerm = power.divide(factorial(x.getClass(), n));
sum = sum.add(currentTerm);
} while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0);
return sum;
}
/**
* Returns an equivalent angle in the interval [0, 2pi)
* @param phi an angle (in radians).
* @return theta in [0, 2pi) that differs from phi by a multiple of 2pi.
*/
private static NumberInterface getSmallAngle(NumberInterface phi, NumberInterface pi){
NumberInterface twoPi = pi.multiply(new NaiveNumber("2").promoteTo(phi.getClass()));
NumberInterface theta = FUNCTION_ABS.apply(phi).subtract(twoPi
.multiply(FUNCTION_ABS.apply(phi).divide(twoPi).floor())); //Now theta is in [0, 2pi).
if(phi.signum() < 0){
theta = twoPi.subtract(theta);
}
return theta;
}
}