1
0
mirror of https://github.com/DanilaFe/abacus synced 2024-12-23 07:50:09 -08:00

Remove unused code and functions in StandardPlugin.

This commit is contained in:
Arthur Drobot 2017-07-31 14:53:41 -07:00
parent 68155446b6
commit 87f98228d0

View File

@ -184,13 +184,6 @@ public class StandardPlugin extends Plugin {
while(left.compareTo(right) > 0);
return sum;
}
/*boolean takeReciprocal = params[0].signum() == 1;
params[0] = FUNCTION_ABS.apply(params[0]).negate();
NumberInterface sum = sumSeries(params[0], StandardPlugin::getExpSeriesTerm, getNTermsExp(getMaxError(params[0]), params[0]));
if (takeReciprocal) {
sum = NaiveNumber.ONE.promoteTo(sum.getClass()).divide(sum);
}
return sum;*/
}
};
/**
@ -271,7 +264,7 @@ public class StandardPlugin extends Plugin {
}
};
/**
* The square root function, sqrt(4) = 2
* The square root function.
*/
public static final Function FUNCTION_SQRT = new Function() {
@Override
@ -289,39 +282,6 @@ public class StandardPlugin extends Plugin {
super(manager);
}
/**
* Returns the nth term of the Taylor series (centered at 0) of e^x
*
* @param n the term required (n >= 0).
* @param x the real number at which the series is evaluated.
* @return the nth term of the series.
*/
private static NumberInterface getExpSeriesTerm(int n, NumberInterface x) {
return x.intPow(n).divide(OP_FACTORIAL.getFunction().apply((new NaiveNumber(n)).promoteTo(x.getClass())));
}
/**
* Returns the number of terms needed to evaluate the exponential function (at x)
* such that the error is at most maxError.
*
* @param maxError Maximum error permissible (This should probably be positive.)
* @param x where the function is evaluated.
* @return the number of terms needed to evaluate the exponential function.
*/
private static int getNTermsExp(NumberInterface maxError, NumberInterface x) {
//We need n such that |x^(n+1)| <= (n+1)! * maxError
//The variables LHS and RHS refer to the above inequality.
int n = 0;
x = FUNCTION_ABS.apply(x);
NumberInterface LHS = x, RHS = maxError;
while (LHS.compareTo(RHS) > 0) {
n++;
LHS = LHS.multiply(x);
RHS = RHS.multiply(new NaiveNumber(n + 1).promoteTo(RHS.getClass()));
}
return n;
}
/**
* Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x.
*