1
0
mirror of https://github.com/DanilaFe/abacus synced 2024-12-23 07:50:09 -08:00

Format code.

This commit is contained in:
Danila Fedorin 2017-08-04 13:20:57 -07:00
parent ce484cfd43
commit b78707a0f4
14 changed files with 317 additions and 286 deletions

View File

@ -41,6 +41,7 @@ public class Configuration {
/**
* Creates a new configuration with the given values.
*
* @param numberImplementation the number implementation, like "naive" or "precise"
* @param disabledPlugins the list of disabled plugins.
*/
@ -51,6 +52,7 @@ public class Configuration {
/**
* Loads a configuration from a given file, keeping non-specified fields default.
*
* @param fromFile the file to load from.
*/
public Configuration(File fromFile) {
@ -60,6 +62,7 @@ public class Configuration {
/**
* Copies the values from the given configuration into this one.
*
* @param otherConfiguration the configuration to copy from.
*/
public void copyFrom(Configuration otherConfiguration) {
@ -70,6 +73,7 @@ public class Configuration {
/**
* Saves this configuration to the given file, creating
* any directories that do not exist.
*
* @param file the file to save to.
*/
public void saveTo(File file) {
@ -83,6 +87,7 @@ public class Configuration {
/**
* Gets the number implementation from this configuration.
*
* @return the number implementation.
*/
public String getNumberImplementation() {
@ -91,6 +96,7 @@ public class Configuration {
/**
* Sets the number implementation for the configuration
*
* @param numberImplementation the number implementation.
*/
public void setNumberImplementation(String numberImplementation) {
@ -99,6 +105,7 @@ public class Configuration {
/**
* Gets the list of disabled plugins.
*
* @return the list of disabled plugins.
*/
public Set<String> getDisabledPlugins() {

View File

@ -9,6 +9,7 @@ import java.awt.datatransfer.StringSelection;
/**
* A cell that copies its value to the clipboard
* when double clicked.
*
* @param <S> The type of the table view generic type.
* @param <T> The type of the value contained in the cell.
*/

View File

@ -26,6 +26,7 @@ public class HistoryModel {
/**
* Creates a new history model with the given variables.
*
* @param input the user input
* @param parsed the parsed input
* @param output the program output.
@ -41,13 +42,16 @@ public class HistoryModel {
/**
* Gets the input property.
*
* @return the input property.
*/
public StringProperty inputProperty() {
return input;
}
/**
* Gets the input.
*
* @return the input.
*/
public String getInput() {
@ -56,13 +60,16 @@ public class HistoryModel {
/**
* Gets the parsed input property.
*
* @return the parsed input property.
*/
public StringProperty parsedProperty() {
return parsed;
}
/**
* Gets the parsed input.
*
* @return the parsed input.
*/
public String getParsed() {
@ -71,13 +78,16 @@ public class HistoryModel {
/**
* Gets the output property.
*
* @return the output property.
*/
public StringProperty outputProperty() {
return output;
}
/**
* Gets the program output.
*
* @return the output.
*/
public String getOutput() {

View File

@ -20,6 +20,7 @@ public class ToggleablePlugin {
/**
* Creates a new toggleable plugin with the given properties.
*
* @param enabled the enabled / disabled state at the beginning.
* @param className the name of the class this plugin toggles.
*/
@ -31,6 +32,7 @@ public class ToggleablePlugin {
/**
* Gets the enabled property of this plugin.
*
* @return the enabled property.
*/
public BooleanProperty enabledProperty() {
@ -39,6 +41,7 @@ public class ToggleablePlugin {
/**
* Checks if this plugin entry should be enabled.
*
* @return whether this plugin will be enabled.
*/
public boolean isEnabled() {
@ -47,6 +50,7 @@ public class ToggleablePlugin {
/**
* Gets the class name this plugin toggles.
*
* @return the class name that should be disabled.
*/
public String getClassName() {

View File

@ -26,6 +26,7 @@ public class NaiveNumber implements NumberInterface {
public NaiveNumber(String value) {
this(Double.parseDouble(value));
}
/**
* Creates a new NaiveNumber with the given value.
*

View File

@ -81,18 +81,21 @@ public interface NumberInterface {
/**
* Returns the least integer greater than or equal to the number.
*
* @return the least integer >= the number, if int can hold the value.
*/
NumberInterface ceiling();
/**
* Return the greatest integer less than or equal to the number.
*
* @return the greatest int >= the number, if int can hold the value.
*/
NumberInterface floor();
/**
* Returns the fractional part of the number.
*
* @return the fractional part of the number.
*/
NumberInterface fractionalPart();
@ -100,6 +103,7 @@ public interface NumberInterface {
/**
* Returns the integer representation of this number, discarding any fractional part,
* if int can hold the value.
*
* @return
*/
int intValue();

View File

@ -26,6 +26,7 @@ public abstract class NumberImplementation {
/**
* Creates a new number implementation with the given data.
*
* @param implementation the implementation class.
* @param priority the priority, higher -> more likely to be converted into.
*/
@ -37,6 +38,7 @@ public abstract class NumberImplementation {
/**
* Gets the list of all promotion paths this implementation can take.
*
* @return the map of documentation paths.
*/
public final Map<Class<? extends NumberInterface>, Function<NumberInterface, NumberInterface>> getPromotionPaths() {
@ -45,6 +47,7 @@ public abstract class NumberImplementation {
/**
* Gets the implementation class used by this implementation.
*
* @return the implementation class.
*/
public final Class<? extends NumberInterface> getImplementation() {
@ -53,6 +56,7 @@ public abstract class NumberImplementation {
/**
* Gets the priority of this number implementation.
*
* @return the priority.
*/
public final int getPriority() {
@ -61,6 +65,7 @@ public abstract class NumberImplementation {
/**
* Abstract function to create a new instance from a string.
*
* @param string the string to create a number from.
* @return the resulting number.
*/
@ -68,6 +73,7 @@ public abstract class NumberImplementation {
/**
* Get the instance of pi with the given implementation.
*
* @return pi
*/
public abstract NumberInterface instanceForPi();

View File

@ -160,6 +160,7 @@ public abstract class Plugin {
/**
* To be used in load(). Registers a new number implementation with the plugin.
* This makes it accessible to the plugin manager.
*
* @param name the name of the implementation.
* @param implementation the actual implementation class to register.
*/
@ -208,6 +209,7 @@ public abstract class Plugin {
* This is done so that number implementations with various degrees of precision
* can provide their own pi values, without losing said precision by
* promoting NaiveNumbers.
*
* @param forClass the class to which to find the pi instance.
* @return the pi value for the given class.
*/

View File

@ -141,6 +141,7 @@ public class PluginManager {
/**
* Gets the number implementation under the given name.
*
* @param name the name of the implementation.
* @return the implementation.
*/
@ -151,6 +152,7 @@ public class PluginManager {
/**
* Gets the number implementation for the given implementation class.
*
* @param name the class for which to find the implementation.
* @return the implementation.
*/
@ -173,6 +175,7 @@ public class PluginManager {
/**
* Gets the mathematical constant pi for the given implementation class.
*
* @param forClass the class for which to find pi.
* @return pi
*/
@ -308,6 +311,7 @@ public class PluginManager {
/**
* Gets a list of all the plugin class files that have been
* added to the plugin manager.
*
* @return the list of all the added plugin classes.
*/
public Set<Class<?>> getLoadedPluginClasses() {

View File

@ -18,8 +18,6 @@ import java.util.function.BiFunction;
*/
public class StandardPlugin extends Plugin {
private static final HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>> FACTORIAL_LISTS = new HashMap<>();
/**
* The addition operator, +
*/
@ -129,20 +127,6 @@ public class StandardPlugin extends Plugin {
}*/
}
});
/**
* The caret / pow operator, ^
*/
public static final Operator OP_CARET = new Operator(OperatorAssociativity.RIGHT, OperatorType.BINARY_INFIX, 2, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return FUNCTION_EXP.apply(FUNCTION_LN.apply(params[0]).multiply(params[1]));
}
});
/**
* The absolute value function, abs(-3) = 3
*/
@ -157,49 +141,6 @@ public class StandardPlugin extends Plugin {
return params[0].multiply((new NaiveNumber(params[0].signum())).promoteTo(params[0].getClass()));
}
};
/**
* The exponential function, exp(1) = e^1 = 2.71...
*/
public static final Function FUNCTION_EXP = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface maxError = getMaxError(params[0]);
int n = 0;
if(params[0].signum() <= 0){
NumberInterface currentTerm = NaiveNumber.ONE.promoteTo(params[0].getClass()), sum = currentTerm;
while(FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0){
n++;
currentTerm = currentTerm.multiply(params[0]).divide((new NaiveNumber(n)).promoteTo(params[0].getClass()));
sum = sum.add(currentTerm);
}
return sum;
}
else{
//We need n such that x^(n+1) * 3^ceil(x) <= maxError * (n+1)!.
//right and left refer to lhs and rhs in the above inequality.
NumberInterface sum = NaiveNumber.ONE.promoteTo(params[0].getClass());
NumberInterface nextNumerator = params[0];
NumberInterface left = params[0].multiply((new NaiveNumber(3)).promoteTo(params[0].getClass()).intPow(params[0].ceiling().intValue())), right = maxError;
do{
sum = sum.add(nextNumerator.divide(factorial(params[0].getClass(), n+1)));
n++;
nextNumerator = nextNumerator.multiply(params[0]);
left = left.multiply(params[0]);
NumberInterface nextN = (new NaiveNumber(n+1)).promoteTo(params[0].getClass());
right = right.multiply(nextN);
//System.out.println(left + ", " + right);
}
while(left.compareTo(right) > 0);
//System.out.println(n+1);
return sum;
}
}
};
/**
* The natural log function.
*/
@ -291,109 +232,6 @@ public class StandardPlugin extends Plugin {
return OP_CARET.getFunction().apply(params[0], ((new NaiveNumber(0.5)).promoteTo(params[0].getClass())));
}
};
/**
* The sine function (the argument is interpreted in radians).
*/
public final Function functionSin = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface pi = getPi(params[0].getClass());
NumberInterface twoPi = pi.multiply(new NaiveNumber(2).promoteTo(pi.getClass()));
NumberInterface theta = getSmallAngle(params[0], pi);
//System.out.println(theta);
if(theta.compareTo(pi.multiply(new NaiveNumber(1.5).promoteTo(twoPi.getClass()))) >= 0){
theta = theta.subtract(twoPi);
}
else if(theta.compareTo(pi.divide(new NaiveNumber(2).promoteTo(pi.getClass()))) > 0){
theta = pi.subtract(theta);
}
//System.out.println(theta);
return sinTaylor(theta);
}
};
/**
* The cosine function (the argument is in radians).
*/
public final Function functionCos = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionSin.apply(getPi(params[0].getClass()).divide(new NaiveNumber(2).promoteTo(params[0].getClass()))
.subtract(params[0]));
}
};
/**
* The tangent function (the argument is in radians).
*/
public final Function functionTan = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionSin.apply(params[0]).divide(functionCos.apply(params[0]));
}
};
/**
* The secant function (the argument is in radians).
*/
public final Function functionSec = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionCos.apply(params[0]));
}
};
/**
* The cosecant function (the argument is in radians).
*/
public final Function functionCsc = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionSin.apply(params[0]));
}
};
/**
* The cotangent function (the argument is in radians).
*/
public final Function functionCot = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionCos.apply(params[0]).divide(functionCos.apply(params[0]));
}
};
/**
* The implementation for double-based naive numbers.
*/
@ -408,7 +246,6 @@ public class StandardPlugin extends Plugin {
return new NaiveNumber(Math.PI);
}
};
/**
* The implementation for the infinite-precision BigDecimal.
*/
@ -445,6 +282,158 @@ public class StandardPlugin extends Plugin {
return C.divide(sum);
}
};
private static final HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>> FACTORIAL_LISTS = new HashMap<>();
/**
* The exponential function, exp(1) = e^1 = 2.71...
*/
public static final Function FUNCTION_EXP = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface maxError = getMaxError(params[0]);
int n = 0;
if (params[0].signum() <= 0) {
NumberInterface currentTerm = NaiveNumber.ONE.promoteTo(params[0].getClass()), sum = currentTerm;
while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0) {
n++;
currentTerm = currentTerm.multiply(params[0]).divide((new NaiveNumber(n)).promoteTo(params[0].getClass()));
sum = sum.add(currentTerm);
}
return sum;
} else {
//We need n such that x^(n+1) * 3^ceil(x) <= maxError * (n+1)!.
//right and left refer to lhs and rhs in the above inequality.
NumberInterface sum = NaiveNumber.ONE.promoteTo(params[0].getClass());
NumberInterface nextNumerator = params[0];
NumberInterface left = params[0].multiply((new NaiveNumber(3)).promoteTo(params[0].getClass()).intPow(params[0].ceiling().intValue())), right = maxError;
do {
sum = sum.add(nextNumerator.divide(factorial(params[0].getClass(), n + 1)));
n++;
nextNumerator = nextNumerator.multiply(params[0]);
left = left.multiply(params[0]);
NumberInterface nextN = (new NaiveNumber(n + 1)).promoteTo(params[0].getClass());
right = right.multiply(nextN);
//System.out.println(left + ", " + right);
}
while (left.compareTo(right) > 0);
//System.out.println(n+1);
return sum;
}
}
};
/**
* The caret / pow operator, ^
*/
public static final Operator OP_CARET = new Operator(OperatorAssociativity.RIGHT, OperatorType.BINARY_INFIX, 2, new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 2;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return FUNCTION_EXP.apply(FUNCTION_LN.apply(params[0]).multiply(params[1]));
}
});
/**
* The sine function (the argument is interpreted in radians).
*/
public final Function functionSin = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
NumberInterface pi = getPi(params[0].getClass());
NumberInterface twoPi = pi.multiply(new NaiveNumber(2).promoteTo(pi.getClass()));
NumberInterface theta = getSmallAngle(params[0], pi);
//System.out.println(theta);
if (theta.compareTo(pi.multiply(new NaiveNumber(1.5).promoteTo(twoPi.getClass()))) >= 0) {
theta = theta.subtract(twoPi);
} else if (theta.compareTo(pi.divide(new NaiveNumber(2).promoteTo(pi.getClass()))) > 0) {
theta = pi.subtract(theta);
}
//System.out.println(theta);
return sinTaylor(theta);
}
};
/**
* The cosine function (the argument is in radians).
*/
public final Function functionCos = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionSin.apply(getPi(params[0].getClass()).divide(new NaiveNumber(2).promoteTo(params[0].getClass()))
.subtract(params[0]));
}
};
/**
* The tangent function (the argument is in radians).
*/
public final Function functionTan = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionSin.apply(params[0]).divide(functionCos.apply(params[0]));
}
};
/**
* The secant function (the argument is in radians).
*/
public final Function functionSec = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionCos.apply(params[0]));
}
};
/**
* The cosecant function (the argument is in radians).
*/
public final Function functionCsc = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return NaiveNumber.ONE.promoteTo(params[0].getClass()).divide(functionSin.apply(params[0]));
}
};
/**
* The cotangent function (the argument is in radians).
*/
public final Function functionCot = new Function() {
@Override
protected boolean matchesParams(NumberInterface[] params) {
return params.length == 1;
}
@Override
protected NumberInterface applyInternal(NumberInterface[] params) {
return functionCos.apply(params[0]).divide(functionCos.apply(params[0]));
}
};
public StandardPlugin(PluginManager manager) {
super(manager);
@ -476,6 +465,64 @@ public class StandardPlugin extends Plugin {
return (new NaiveNumber(10)).promoteTo(number.getClass()).intPow(-number.getMaxPrecision());
}
/**
* A factorial function that uses memoization for each number class; it efficiently
* computes factorials of non-negative integers.
*
* @param numberClass type of number to return.
* @param n non-negative integer.
* @return a number of numClass with value n factorial.
*/
public static NumberInterface factorial(Class<? extends NumberInterface> numberClass, int n) {
if (!FACTORIAL_LISTS.containsKey(numberClass)) {
FACTORIAL_LISTS.put(numberClass, new ArrayList<>());
FACTORIAL_LISTS.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
FACTORIAL_LISTS.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
}
ArrayList<NumberInterface> list = FACTORIAL_LISTS.get(numberClass);
if (n >= list.size()) {
while (list.size() < n + 16) {
list.add(list.get(list.size() - 1).multiply(new NaiveNumber(list.size()).promoteTo(numberClass)));
}
}
return list.get(n);
}
/**
* Returns the value of the Taylor series for sin (centered at 0) at x.
*
* @param x where the series is evaluated.
* @return the value of the series
*/
private static NumberInterface sinTaylor(NumberInterface x) {
NumberInterface power = x, multiplier = x.multiply(x).negate(), currentTerm = x, sum = x;
NumberInterface maxError = getMaxError(x);
int n = 1;
do {
n += 2;
power = power.multiply(multiplier);
currentTerm = power.divide(factorial(x.getClass(), n));
sum = sum.add(currentTerm);
} while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0);
return sum;
}
/**
* Returns an equivalent angle in the interval [0, 2pi)
*
* @param phi an angle (in radians).
* @return theta in [0, 2pi) that differs from phi by a multiple of 2pi.
*/
private static NumberInterface getSmallAngle(NumberInterface phi, NumberInterface pi) {
NumberInterface twoPi = pi.multiply(new NaiveNumber("2").promoteTo(phi.getClass()));
NumberInterface theta = FUNCTION_ABS.apply(phi).subtract(twoPi
.multiply(FUNCTION_ABS.apply(phi).divide(twoPi).floor())); //Now theta is in [0, 2pi).
if (phi.signum() < 0) {
theta = twoPi.subtract(theta);
}
return theta;
}
@Override
public void onEnable() {
registerNumberImplementation("naive", IMPLEMENTATION_NAIVE);
@ -505,59 +552,4 @@ public class StandardPlugin extends Plugin {
public void onDisable() {
}
/**
* A factorial function that uses memoization for each number class; it efficiently
* computes factorials of non-negative integers.
* @param numberClass type of number to return.
* @param n non-negative integer.
* @return a number of numClass with value n factorial.
*/
public static NumberInterface factorial(Class<? extends NumberInterface> numberClass, int n){
if(!FACTORIAL_LISTS.containsKey(numberClass)){
FACTORIAL_LISTS.put(numberClass, new ArrayList<>());
FACTORIAL_LISTS.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
FACTORIAL_LISTS.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
}
ArrayList<NumberInterface> list = FACTORIAL_LISTS.get(numberClass);
if(n >= list.size()){
while(list.size() < n + 16){
list.add(list.get(list.size()-1).multiply(new NaiveNumber(list.size()).promoteTo(numberClass)));
}
}
return list.get(n);
}
/**
* Returns the value of the Taylor series for sin (centered at 0) at x.
* @param x where the series is evaluated.
* @return the value of the series
*/
private static NumberInterface sinTaylor(NumberInterface x){
NumberInterface power = x, multiplier = x.multiply(x).negate(), currentTerm = x, sum = x;
NumberInterface maxError = getMaxError(x);
int n = 1;
do{
n += 2;
power = power.multiply(multiplier);
currentTerm = power.divide(factorial(x.getClass(), n));
sum = sum.add(currentTerm);
} while (FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0);
return sum;
}
/**
* Returns an equivalent angle in the interval [0, 2pi)
* @param phi an angle (in radians).
* @return theta in [0, 2pi) that differs from phi by a multiple of 2pi.
*/
private static NumberInterface getSmallAngle(NumberInterface phi, NumberInterface pi){
NumberInterface twoPi = pi.multiply(new NaiveNumber("2").promoteTo(phi.getClass()));
NumberInterface theta = FUNCTION_ABS.apply(phi).subtract(twoPi
.multiply(FUNCTION_ABS.apply(phi).divide(twoPi).floor())); //Now theta is in [0, 2pi).
if(phi.signum() < 0){
theta = twoPi.subtract(theta);
}
return theta;
}
}