Add proof of equivalence of the two languages
This commit is contained in:
parent
62f59a9a4d
commit
ab56a8414f
154
Language/Equivalence.agda
Normal file
154
Language/Equivalence.agda
Normal file
|
@ -0,0 +1,154 @@
|
|||
{-# OPTIONS --guardedness #-}
|
||||
module Language.Equivalence where
|
||||
|
||||
open import Language.Nested using () renaming
|
||||
( Instruction to Instructionᵃ; Program to Programᵃ; Env to Envᵃ
|
||||
; pushint to pushintᵃ; pushbool to pushboolᵃ; add to addᵃ
|
||||
; loop to loopᵃ; break to breakᵃ
|
||||
; Triple to Tripleᵃ
|
||||
; _⇒_ to _⇒ᵃ_; _⇒*_ to _⇒*ᵃ_
|
||||
; pushint-eval to pushint-evalᵃ; pushbool-eval to pushbool-evalᵃ; add-eval to add-evalᵃ
|
||||
; break-evalᵗ to break-evalᵗᵃ; break-evalᶠ to break-evalᶠᵃ; empty-eval to empty-evalᵃ
|
||||
; loop-eval⁰ to loop-eval⁰ᵃ; loop-evalⁿ to loop-evalⁿᵃ
|
||||
; doneᵉ to doneᵉᵃ; _thenᵉ_ to _thenᵉᵃ_
|
||||
)
|
||||
open import Language.Flat
|
||||
using
|
||||
(_⇒ₓ_; pushint-skip; pushbool-skip; add-skip; break-skip; loop-skip; end-skip
|
||||
)
|
||||
renaming
|
||||
( Instruction to Instructionᵇ; Program to Programᵇ; Env to Envᵇ
|
||||
; pushint to pushintᵇ; pushbool to pushboolᵇ; add to addᵇ
|
||||
; loop to loopᵇ; break to breakᵇ; end to endᵇ
|
||||
; Triple to Tripleᵇ
|
||||
; _⇒_ to _⇒ᵇ_; _⇒*_ to _⇒*ᵇ_
|
||||
; pushint-eval to pushint-evalᵇ; pushbool-eval to pushbool-evalᵇ; add-eval to add-evalᵇ
|
||||
; break-evalᵗ to break-evalᵗᵇ; break-evalᶠ to break-evalᶠᵇ; end-eval to end-evalᵇ
|
||||
; loop-eval⁰ to loop-eval⁰ᵇ; loop-evalⁿ to loop-evalⁿᵇ
|
||||
; doneᵉ to doneᵉᵇ; _thenᵉ_ to _thenᵉᵇ_
|
||||
)
|
||||
open import Language.Values using
|
||||
( Value; int; bool
|
||||
; ValueType; tint; tbool
|
||||
; ⟦_⟧ˢ; ⟦⟧ˢ-empty; ⟦⟧ˢ-int; ⟦⟧ˢ-bool
|
||||
; s; s'; s''
|
||||
; st; st'; st''
|
||||
; b; b₁; b₂
|
||||
; z; z₁; z₂
|
||||
)
|
||||
|
||||
open import Data.List using (List; _∷_; []; length; foldr; _++_)
|
||||
open import Data.List.Properties using (++-assoc)
|
||||
open import Data.Product using (Σ; _×_; _,_)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
|
||||
|
||||
variable
|
||||
n n' : ℕ
|
||||
|
||||
iᵃ : Instructionᵃ
|
||||
isᵃ isᵃ' isᵃ'' : Programᵃ
|
||||
Sᵃ Sᵃ' Sᵃ'' : Envᵃ
|
||||
|
||||
iᵇ : Instructionᵇ
|
||||
isᵇ isᵇ' isᵇ'' : Programᵇ
|
||||
Sᵇ Sᵇ' Sᵇ'' : Envᵇ
|
||||
|
||||
|
||||
interleaved mutual
|
||||
⟦_⟧ⁱ : Instructionᵃ → List Instructionᵇ
|
||||
⟦_⟧ⁱˢ : List Instructionᵃ → List Instructionᵇ
|
||||
|
||||
⟦ pushintᵃ z ⟧ⁱ = pushintᵇ z ∷ []
|
||||
⟦ pushboolᵃ b ⟧ⁱ = pushboolᵇ b ∷ []
|
||||
⟦ addᵃ ⟧ⁱ = addᵇ ∷ []
|
||||
⟦ loopᵃ n is ⟧ⁱ = loopᵇ n ∷ (⟦ is ⟧ⁱˢ ++ endᵇ ∷ [])
|
||||
⟦ breakᵃ ⟧ⁱ = breakᵇ ∷ []
|
||||
|
||||
⟦ [] ⟧ⁱˢ = []
|
||||
⟦ i ∷ is ⟧ⁱˢ = ⟦ i ⟧ⁱ ++ ⟦ is ⟧ⁱˢ
|
||||
|
||||
-- Translation always leaves well-balanced programs
|
||||
interleaved mutual
|
||||
lemma₁ : isᵇ ⇒ₓ isᵇ' → (⟦ iᵃ ⟧ⁱ ++ isᵇ) ⇒ₓ isᵇ'
|
||||
lemma₁' : isᵇ ⇒ₓ isᵇ' → (⟦ isᵃ ⟧ⁱˢ ++ isᵇ) ⇒ₓ isᵇ'
|
||||
lemma₂ : (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ isᵇ) ⇒ₓ isᵇ
|
||||
|
||||
lemma₁ {iᵃ = pushintᵃ z} = pushint-skip
|
||||
lemma₁ {iᵃ = pushboolᵃ z} = pushbool-skip
|
||||
lemma₁ {iᵃ = addᵃ} = add-skip
|
||||
lemma₁ {iᵃ = breakᵃ} = break-skip
|
||||
lemma₁ {isᵇ = isᵇ} {iᵃ = loopᵃ n is}
|
||||
rewrite ++-assoc ⟦ is ⟧ⁱˢ (endᵇ ∷ []) isᵇ =
|
||||
loop-skip (lemma₂ {isᵃ = is} {isᵇ = isᵇ})
|
||||
|
||||
lemma₁' {isᵃ = []} isᵇ⇒ₓisᵇ' = isᵇ⇒ₓisᵇ'
|
||||
lemma₁' {isᵇ = isᵇ} {isᵃ = iᵃ ∷ isᵃ} isᵇ⇒ₓisᵇ'
|
||||
rewrite ++-assoc ⟦ iᵃ ⟧ⁱ ⟦ isᵃ ⟧ⁱˢ isᵇ =
|
||||
lemma₁ {iᵃ = iᵃ} (lemma₁' {isᵃ = isᵃ} isᵇ⇒ₓisᵇ')
|
||||
|
||||
lemma₂ {isᵃ = isᵃ} = lemma₁' {isᵃ = isᵃ} end-skip
|
||||
|
||||
-- In flat semantics, we drop the top continuation and seek forward until we find
|
||||
-- an 'end'. In nested semantics, we drop the current instructions and use the
|
||||
-- bit of the top continuation after the 'while'. We need to be able to reconcile
|
||||
-- the two.
|
||||
data ⟦_⟧ᵀ=_ : Programᵃ × Envᵃ → Programᵇ × Envᵇ → Set where
|
||||
⟦⟧ᵀ-empty : ⟦ isᵃ , [] ⟧ᵀ= (⟦ isᵃ ⟧ⁱˢ , [])
|
||||
⟦⟧ᵀ-step : ⟦ isᵃ'' , Sᵃ ⟧ᵀ= (isᵇ , Sᵇ) →
|
||||
⟦ isᵃ , ((loopᵃ n isᵃ' ∷ isᵃ'') ∷ Sᵃ) ⟧ᵀ= ((⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) ++ isᵇ , (⟦ loopᵃ n isᵃ' ⟧ⁱ ++ isᵇ) ∷ Sᵇ)
|
||||
|
||||
|
||||
step-equivalence : (s , isᵃ , Sᵃ) ⇒ᵃ (s' , isᵃ' , Sᵃ') →
|
||||
⟦ isᵃ , Sᵃ ⟧ᵀ= (isᵇ , Sᵇ) →
|
||||
Σ (Programᵇ × Envᵇ) (λ { (isᵇ' , Sᵇ') → (s , isᵇ , Sᵇ) ⇒ᵇ (s' , isᵇ' , Sᵇ') ×
|
||||
⟦ isᵃ' , Sᵃ' ⟧ᵀ= (isᵇ' , Sᵇ') })
|
||||
step-equivalence pushint-evalᵃ ⟦⟧ᵀ-empty = ((_ , _) , pushint-evalᵇ , ⟦⟧ᵀ-empty)
|
||||
step-equivalence pushint-evalᵃ (⟦⟧ᵀ-step next) = ((_ , _) , pushint-evalᵇ , ⟦⟧ᵀ-step next)
|
||||
step-equivalence pushbool-evalᵃ ⟦⟧ᵀ-empty = ((_ , _) , pushbool-evalᵇ , ⟦⟧ᵀ-empty)
|
||||
step-equivalence pushbool-evalᵃ (⟦⟧ᵀ-step next) = ((_ , _) , pushbool-evalᵇ , ⟦⟧ᵀ-step next)
|
||||
step-equivalence add-evalᵃ ⟦⟧ᵀ-empty = ((_ , _) , add-evalᵇ , ⟦⟧ᵀ-empty)
|
||||
step-equivalence add-evalᵃ (⟦⟧ᵀ-step next) = ((_ , _) , add-evalᵇ , ⟦⟧ᵀ-step next)
|
||||
step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-eval⁰ᵃ ⟦⟧ᵀ-empty
|
||||
rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) ⟦ isᵃ ⟧ⁱˢ
|
||||
= ((_ , _) , loop-eval⁰ᵇ (lemma₁' {isᵃ = isˡ} end-skip) , ⟦⟧ᵀ-empty)
|
||||
step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-eval⁰ᵃ (⟦⟧ᵀ-step {isᵇ = isᵇ} rec)
|
||||
rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) ⟦ isᵃ ⟧ⁱˢ
|
||||
rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ ⟦ isᵃ ⟧ⁱˢ) (endᵇ ∷ [])
|
||||
rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ ⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) isᵇ
|
||||
= ((_ , _) , loop-eval⁰ᵇ (lemma₁' {isᵃ = isˡ} end-skip) , (⟦⟧ᵀ-step rec))
|
||||
step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-evalⁿᵃ ⟦⟧ᵀ-empty
|
||||
= ((_ , _) , loop-evalⁿᵇ , ⟦⟧ᵀ-step ⟦⟧ᵀ-empty)
|
||||
step-equivalence {isᵃ = loopᵃ n isˡ ∷ isᵃ} loop-evalⁿᵃ (⟦⟧ᵀ-step {isᵇ = isᵇ} rec)
|
||||
rewrite ++-assoc (⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) ⟦ isᵃ ⟧ⁱˢ (endᵇ ∷ [])
|
||||
rewrite ++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ [])
|
||||
rewrite sym (++-assoc ⟦ isˡ ⟧ⁱˢ (endᵇ ∷ []) (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []))
|
||||
rewrite ++-assoc (⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) (⟦ isᵃ ⟧ⁱˢ ++ endᵇ ∷ []) isᵇ
|
||||
= (_ , loop-evalⁿᵇ , ⟦⟧ᵀ-step (⟦⟧ᵀ-step rec))
|
||||
step-equivalence break-evalᶠᵃ (⟦⟧ᵀ-step next) = ((_ , _) , break-evalᶠᵇ , ⟦⟧ᵀ-step next)
|
||||
step-equivalence {isᵃ = breakᵃ ∷ isᵃ} {Sᵃ = (loopᵃ n isˡ ∷ isᵃ') ∷ Sᵃ} break-evalᵗᵃ (⟦⟧ᵀ-step {isᵇ = isᵇ} next)
|
||||
rewrite ++-assoc ⟦ isᵃ ⟧ⁱˢ (endᵇ ∷ []) isᵇ
|
||||
= ((_ , _) , break-evalᵗᵇ (lemma₁' {isᵃ = isᵃ} end-skip) , next)
|
||||
step-equivalence empty-evalᵃ (⟦⟧ᵀ-step ⟦⟧ᵀ-empty)
|
||||
= ((_ , _) , end-evalᵇ , ⟦⟧ᵀ-empty)
|
||||
step-equivalence {Sᵃ = (loopᵃ n isˡ ∷ isᵃ') ∷ Sᵃ} empty-evalᵃ (⟦⟧ᵀ-step (⟦⟧ᵀ-step {isᵇ = isᵇ} next))
|
||||
rewrite sym (++-assoc (loopᵇ n ∷ ⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) (⟦ isᵃ' ⟧ⁱˢ ++ endᵇ ∷ []) isᵇ)
|
||||
rewrite sym (++-assoc (⟦ isˡ ⟧ⁱˢ ++ endᵇ ∷ []) (⟦ isᵃ' ⟧ⁱˢ) (endᵇ ∷ []))
|
||||
= ((_ , _) , end-evalᵇ , ⟦⟧ᵀ-step next)
|
||||
|
||||
equivalence : (s , isᵃ , Sᵃ) ⇒*ᵃ (s' , isᵃ' , Sᵃ') →
|
||||
⟦ isᵃ , Sᵃ ⟧ᵀ= (isᵇ , Sᵇ) →
|
||||
Σ (Programᵇ × Envᵇ) (λ { (isᵇ' , Sᵇ') → (s , isᵇ , Sᵇ) ⇒*ᵇ (s' , isᵇ' , Sᵇ') ×
|
||||
⟦ isᵃ' , Sᵃ' ⟧ᵀ= (isᵇ' , Sᵇ') })
|
||||
equivalence doneᵉᵃ trans@(⟦⟧ᵀ-empty) = (_ , (doneᵉᵇ , trans))
|
||||
equivalence (isᵃ⇒isᵃ' thenᵉᵃ rest) trans =
|
||||
let (_ , isᵇ⇒isᵇ' , trans') = step-equivalence isᵃ⇒isᵃ' trans in
|
||||
let (_ , isᵇ'⇒*isᵇ'' , trans'') = equivalence rest trans' in
|
||||
(_ , isᵇ⇒isᵇ' thenᵉᵇ isᵇ'⇒*isᵇ'' , trans'')
|
||||
|
||||
equivalence' : (s , isᵃ , []) ⇒*ᵃ (s' , [] , []) →
|
||||
(s , ⟦ isᵃ ⟧ⁱˢ , []) ⇒*ᵇ (s' , [] , [])
|
||||
equivalence' eval with
|
||||
(_ , isᵃ⇒| , ⟦⟧ᵀ-empty) ← equivalence eval ⟦⟧ᵀ-empty = isᵃ⇒|
|
Loading…
Reference in New Issue
Block a user