Finish first proof for day 8.
Apparently writing proof objects by hand is easier than using tactics.
This commit is contained in:
parent
7757fd2b49
commit
8ea03a4c51
485
day8.v
485
day8.v
@ -5,6 +5,8 @@ Require Import Coq.Vectors.Fin.
|
||||
Require Import Coq.Program.Equality.
|
||||
Require Import Coq.Logic.Eqdep_dec.
|
||||
Require Import Coq.Arith.Peano_dec.
|
||||
Require Import Coq.Program.Wf.
|
||||
Require Import Lia.
|
||||
|
||||
Module DayEight (Import M:Int).
|
||||
(* We need to coerce natural numbers into integers to add them. *)
|
||||
@ -177,9 +179,9 @@ Module DayEight (Import M:Int).
|
||||
|
||||
Theorem valid_input_progress : forall pc v acc,
|
||||
(pc = nat_to_fin n /\ done inp (pc, v, acc)) \/
|
||||
exists pcs, pc = weaken_one pcs /\
|
||||
(exists pcs, pc = weaken_one pcs /\
|
||||
((~ set_In pcs v /\ stuck inp (pc, v, acc)) \/
|
||||
(exists pc' acc', set_In pcs v /\ step_noswap inp (pc, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc'))).
|
||||
(exists pc' acc', set_In pcs v /\ step_noswap inp (pc, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc')))).
|
||||
Proof.
|
||||
intros pc v acc.
|
||||
(* Have we reached the end? *)
|
||||
@ -197,450 +199,45 @@ Module DayEight (Import M:Int).
|
||||
left. split; auto. apply stuck_prog; auto.
|
||||
Qed.
|
||||
|
||||
Theorem run_ok_or_fail : forall st st',
|
||||
run_noswap inp st st' ->
|
||||
(exists v acc, st' = (nat_to_fin n, v, acc) /\ done inp st') \/
|
||||
(exists pcs v acc, st' = (weaken_one pcs, v, acc) /\ stuck inp st').
|
||||
Proof.
|
||||
intros st st' Hr.
|
||||
induction Hr.
|
||||
- left. inversion H; subst. exists v. exists acc. auto.
|
||||
- right. inversion H; subst. exists pc'. exists v. exists acc. auto.
|
||||
- apply IHHr; auto.
|
||||
Program Fixpoint valid_input_terminates (pc : fin (S n)) (v : set (fin n)) (acc : t) (Hnd : List.NoDup v)
|
||||
{ measure (length v) }:
|
||||
(exists pc', run_noswap inp (pc, v, acc) pc') :=
|
||||
match valid_input_progress pc v acc with
|
||||
| or_introl (conj Heq Hdone) =>
|
||||
inhabited_sig_to_exists
|
||||
(inhabits
|
||||
(@exist (state n)
|
||||
(fun x => run_noswap inp (pc, v, acc) x) (pc, v, acc) (run_noswap_ok _ _ Hdone)))
|
||||
| or_intror (ex_intro _ pcs (conj Hw w)) =>
|
||||
match w with
|
||||
| or_introl (conj Hnin Hstuck) =>
|
||||
inhabited_sig_to_exists
|
||||
(inhabits
|
||||
(@exist (state n)
|
||||
(fun x => run_noswap inp (pc, v, acc) x) (pc, v, acc) (run_noswap_fail _ _ Hstuck)))
|
||||
| or_intror (ex_intro _ pc' (ex_intro _ acc' (conj Hin Hst))) =>
|
||||
match valid_input_terminates pc' (set_remove Fin.eq_dec pcs v) acc' (set_remove_nodup Fin.eq_dec pcs Hnd) with
|
||||
| ex_intro _ pc'' Hrun =>
|
||||
inhabited_sig_to_exists
|
||||
(inhabits
|
||||
(@exist (state n)
|
||||
(fun x => run_noswap inp (pc, v, acc) x) pc''
|
||||
(run_noswap_trans _ _ (pc', set_remove Fin.eq_dec pcs v, acc') _ Hst Hrun)))
|
||||
end
|
||||
end
|
||||
end.
|
||||
Obligation 1.
|
||||
clear Heq_anonymous. clear valid_input_terminates. clear Hst.
|
||||
induction v.
|
||||
- inversion Hin.
|
||||
- destruct (Fin.eq_dec pcs a) eqn:Heq_dec.
|
||||
+ simpl. rewrite Heq_dec. lia.
|
||||
+ inversion Hnd; subst.
|
||||
inversion Hin. subst. exfalso. apply n0. auto.
|
||||
specialize (IHv H2 H).
|
||||
simpl. rewrite Heq_dec. simpl. lia.
|
||||
Qed.
|
||||
|
||||
Theorem set_induction {A : Type}
|
||||
(Aeq_dec : forall (x y : A), { x = y } + { x <> y })
|
||||
(P : set A -> Prop) :
|
||||
P (@empty_set A) -> (forall a st, P (set_remove Aeq_dec a st) -> P st) ->
|
||||
forall st, P st.
|
||||
Proof. Admitted.
|
||||
|
||||
(* Theorem add_terminates_later : forall pcs a v acc,
|
||||
List.NoDup v -> pcs <> a ->
|
||||
(forall pc' acc', exists st', run_noswap inp (pc', set_remove Fin.eq_dec a v, acc') st') ->
|
||||
exists st', run_noswap inp (weaken_one pcs, v, acc) st'.
|
||||
Proof.
|
||||
intros pcs a v acc Hnd Hneq He.
|
||||
assert (exists st', run_noswap inp (weaken_one pcs, set_remove Fin.eq_dec a v, acc) st').
|
||||
{ specialize (He (weaken_one pcs) acc). apply He. }
|
||||
destruct H as [st' Hr].
|
||||
inversion Hr; subst.
|
||||
- inversion H. destruct n. inversion pcs. apply weaken_neq_to_fin in H2 as [].
|
||||
- inversion H; subst. apply weaken_one_inj in H0. subst.
|
||||
eexists. eapply run_noswap_fail. apply stuck_prog.
|
||||
intros Hin. apply H2. apply set_remove_3; auto.
|
||||
-
|
||||
inversion H; subst; apply weaken_one_inj in H1; subst.
|
||||
+ eexists. eapply run_noswap_trans. apply step_noswap_add.
|
||||
* apply H6.
|
||||
* apply (@set_remove_1 _ Fin.eq_dec pcs a v H7).
|
||||
*
|
||||
|
||||
destruct He as [st' Hr].
|
||||
dependent induction Hr.
|
||||
- inversion H. destruct n. inversion pcs. apply weaken_neq_to_fin in H2 as [].
|
||||
- inversion H; subst. apply weaken_one_inj in H0. subst.
|
||||
eexists. eapply run_noswap_fail. apply stuck_prog.
|
||||
intros Hin. apply H2. apply set_remove_3; auto.
|
||||
- destruct st' as [[pc' v'] a']. *)
|
||||
|
||||
Lemma set_remove_comm : forall {A:Type} Aeq_dec a b (st : set A),
|
||||
set_remove Aeq_dec a (set_remove Aeq_dec b st) = set_remove Aeq_dec b (set_remove Aeq_dec a st).
|
||||
Admitted.
|
||||
|
||||
Theorem remove_pc_safe : forall pc a v acc,
|
||||
List.NoDup v ->
|
||||
(exists st', run_noswap inp (pc, v, acc) st') ->
|
||||
exists st', run_noswap inp (pc, set_remove Fin.eq_dec a v, acc) st'.
|
||||
Proof.
|
||||
intros pc a v acc Hnd [st' He].
|
||||
dependent induction He.
|
||||
- inversion H; subst.
|
||||
eexists. apply run_noswap_ok. apply done_prog.
|
||||
- inversion H; subst.
|
||||
eexists. apply run_noswap_fail. apply stuck_prog.
|
||||
intros Contra. apply H2. eapply set_remove_1. apply Contra.
|
||||
- destruct st' as [[pc' v'] acc'].
|
||||
inversion H; subst; destruct (Fin.eq_dec pc'0 a); subst.
|
||||
+ eexists. apply run_noswap_fail. apply stuck_prog.
|
||||
intros Contra. apply set_remove_2 in Contra; auto.
|
||||
+ edestruct IHHe; auto. apply set_remove_nodup; auto.
|
||||
eexists. eapply run_noswap_trans.
|
||||
* apply step_noswap_add. apply H3. apply set_remove_iff; auto.
|
||||
* rewrite set_remove_comm. apply H0.
|
||||
+ eexists. apply run_noswap_fail. apply stuck_prog.
|
||||
intros Contra. apply set_remove_2 in Contra; auto.
|
||||
+ edestruct IHHe; auto. apply set_remove_nodup; auto.
|
||||
eexists. eapply run_noswap_trans.
|
||||
* apply step_noswap_nop with t0. apply H3. apply set_remove_iff; auto.
|
||||
* rewrite set_remove_comm. apply H0.
|
||||
+ eexists. apply run_noswap_fail. apply stuck_prog.
|
||||
intros Contra. apply set_remove_2 in Contra; auto.
|
||||
+ edestruct IHHe; auto. apply set_remove_nodup; auto.
|
||||
eexists. eapply run_noswap_trans.
|
||||
* apply step_noswap_jmp with t0. apply H5. apply set_remove_iff; auto.
|
||||
apply H9.
|
||||
* rewrite set_remove_comm. apply H0.
|
||||
Qed.
|
||||
|
||||
Theorem valid_input_terminates : forall pc v acc,
|
||||
List.NoDup v -> exists st', run_noswap inp (pc, v, acc) st'.
|
||||
Proof.
|
||||
intros pc v acc.
|
||||
generalize dependent pc. generalize dependent acc.
|
||||
induction v as [|a v] using (@set_induction _ Fin.eq_dec); intros acc pc Hnd.
|
||||
- destruct (valid_input_progress pc (empty_set _) acc) as [|[pcs [Hpc []]]].
|
||||
+ (* The program is done at this PC. *)
|
||||
destruct H as [Hpc Hd].
|
||||
eexists. apply run_noswap_ok. auto.
|
||||
+ (* The PC is not done, so we must have failed. *)
|
||||
destruct H as [Hin Hst].
|
||||
eexists. apply run_noswap_fail. auto.
|
||||
+ (* The program can't possibly take a step if
|
||||
it's not done and the set of valid PCs is
|
||||
empty. This case is absurd. *)
|
||||
destruct H as [pc' [acc' [Hin Hstep]]].
|
||||
inversion Hstep; subst; inversion H6.
|
||||
- (* How did the program terminate? *)
|
||||
destruct (valid_input_progress pc (set_remove Fin.eq_dec a v) acc) as [|[pcs H]].
|
||||
+ (* We were done without a, so we're still done now. *)
|
||||
destruct H as [Hpc Hd]. rewrite Hpc.
|
||||
eexists. apply run_noswap_ok. apply done_prog.
|
||||
+ (* We were not done without a. *)
|
||||
destruct H as [Hw H].
|
||||
(* Is a equal to the current address? *)
|
||||
destruct (Fin.eq_dec pcs a) as [Heq_dec|Heq_dec].
|
||||
* (* a is equal to the current address. Now, we can resume,
|
||||
even though we couldn't have before. *)
|
||||
subst. destruct H.
|
||||
{ destruct (set_In_dec Fin.eq_dec a v).
|
||||
- destruct (step_if_possible a v acc s) as [pc' [acc' Hstep]].
|
||||
destruct (IHv acc' pc') as [st' Hr].
|
||||
apply set_remove_nodup. auto.
|
||||
exists st'. eapply run_noswap_trans. apply Hstep. apply Hr.
|
||||
- eexists. apply run_noswap_fail. apply stuck_prog. assumption. }
|
||||
{ destruct H as [pc' [acc' [Hf]]].
|
||||
exfalso. apply set_remove_2 in Hf. apply Hf. auto. auto. }
|
||||
* (* a is not equal to the current address.
|
||||
This case is not straightforward. *)
|
||||
subst. destruct H.
|
||||
{ (* We were stuck without a, and since PC is not a, we're no less
|
||||
stuck now. *)
|
||||
destruct H. eexists. eapply run_noswap_fail. apply stuck_prog.
|
||||
intros Hin. apply H. apply set_remove_iff; auto. }
|
||||
{ (* We could move on without a. We can move on still. *)
|
||||
destruct H as [pc' [acc' [Hin Hs]]].
|
||||
destruct (step_if_possible pcs v acc) as [pc'' [acc'' Hs']].
|
||||
- apply (set_remove_1 Fin.eq_dec pcs a v Hin).
|
||||
- eexists. eapply run_noswap_trans. apply Hs'.
|
||||
destruct (IHv acc'' pc'') as [st' Hr].
|
||||
+ apply set_remove_nodup; auto.
|
||||
+ specialize (IHv acc'' pc'') as IH.
|
||||
Admitted.
|
||||
|
||||
(* specialize (IHv acc pc (set_remove_nodup Fin.eq_dec a Hnd)) as [st' Hr].
|
||||
dependent induction Hr; subst.
|
||||
{ inversion H0. destruct n. inversion pcs. apply weaken_neq_to_fin in H3 as []. }
|
||||
{ destruct H.
|
||||
- eexists. apply run_noswap_fail. apply stuck_prog.
|
||||
intros Hin. specialize (set_remove_3 Fin.eq_dec v Hin Heq_dec) as Hin'.
|
||||
destruct H. apply H. apply Hin'.
|
||||
- destruct H as [pc' [acc' [Hin Hstep]]].
|
||||
inversion H0; subst. apply weaken_one_inj in H. subst.
|
||||
exfalso. apply H2. apply Hin. }
|
||||
{ destruct H.
|
||||
- destruct H as [Hin Hst].
|
||||
inversion H0; subst; apply weaken_one_inj in H; subst;
|
||||
exfalso; apply Hin; assumption.
|
||||
- assert (weaken_one pcs = weaken_one pcs) as Hrefl by reflexivity.
|
||||
specialize (IHHr Hv0 (weaken_one pcs) Hrefl acc v Hnd a (or_intror H) Heq_dec Hv).
|
||||
apply IHHr.
|
||||
|
||||
(* We were broken without a, but now we could be working again. *)
|
||||
destruct H as [Hin Hst]. rewrite Hpc. admit.
|
||||
+ (* We could make a step without the a. We can still do so now. *)
|
||||
|
||||
|
||||
destruct H as [pc' [acc' [Hin Hstep]]].
|
||||
destruct (IHv acc pc) as [st' Hr]. inversion Hr.
|
||||
* inversion H; subst.
|
||||
destruct n. inversion pcs. apply weaken_neq_to_fin in H5 as [].
|
||||
* inversion H; subst.
|
||||
apply weaken_one_inj in H3. subst.
|
||||
exfalso. apply H5. apply Hin.
|
||||
* subst. apply set_remove_1 in Hin.
|
||||
destruct (step_if_possible pcs v acc Hin) as [pc'' [acc'' Hstep']].
|
||||
eexists. eapply run_noswap_trans.
|
||||
apply Hstep'. specialize (IHv acc'' pc'') as [st''' Hr'].
|
||||
|
||||
|
||||
destruct (fin_big_or_small pc).
|
||||
(* If we're at the end, we're done. *)
|
||||
eexists. rewrite H. eapply run_noswap_ok.
|
||||
(* We're not at the end. *) *)
|
||||
End ValidInput.
|
||||
(*
|
||||
|
||||
Lemma set_add_idempotent : forall {A:Type}
|
||||
(Aeq_dec : forall x y : A, { x = y } + { x <> y })
|
||||
(a : A) (s : set A), set_mem Aeq_dec a s = true -> set_add Aeq_dec a s = s.
|
||||
Proof.
|
||||
intros A Aeq_dec a s Hin.
|
||||
induction s.
|
||||
- inversion Hin.
|
||||
- simpl. simpl in Hin.
|
||||
destruct (Aeq_dec a a0).
|
||||
+ reflexivity.
|
||||
+ simpl. rewrite IHs; auto.
|
||||
Qed.
|
||||
|
||||
Theorem set_add_append : forall {A:Type}
|
||||
(Aeq_dec : forall x y : A, {x = y } + { x <> y })
|
||||
(a : A) (s : set A), set_mem Aeq_dec a s = false ->
|
||||
set_add Aeq_dec a s = List.app s (List.cons a List.nil).
|
||||
Proof.
|
||||
induction s.
|
||||
- reflexivity.
|
||||
- intros Hnm. simpl in Hnm.
|
||||
destruct (Aeq_dec a a0) eqn:Heq_dec.
|
||||
+ inversion Hnm.
|
||||
+ simpl. rewrite Heq_dec. rewrite IHs.
|
||||
reflexivity. assumption.
|
||||
Qed.
|
||||
|
||||
Lemma list_append_or_nil : forall {A:Type} (l : list A),
|
||||
l = List.nil \/ exists l' a, l = List.app l' (List.cons a List.nil).
|
||||
Proof.
|
||||
induction l.
|
||||
- left. reflexivity.
|
||||
- right. destruct IHl.
|
||||
+ exists List.nil. exists a.
|
||||
rewrite H. reflexivity.
|
||||
+ destruct H as [l' [a' H]].
|
||||
exists (List.cons a l'). exists a'.
|
||||
rewrite H. reflexivity.
|
||||
Qed.
|
||||
|
||||
Theorem list_append_induction : forall {A:Type}
|
||||
(P : list A -> Prop),
|
||||
P List.nil -> (forall (a : A) (l : list A), P l -> P (List.app l (List.cons a (List.nil)))) ->
|
||||
forall l, P l.
|
||||
Proof. Admitted.
|
||||
|
||||
|
||||
Theorem set_induction : forall {A:Type}
|
||||
(Aeq_dec : forall x y : A, { x = y } + {x <> y })
|
||||
(P : set A -> Prop),
|
||||
P (@empty_set A) -> (forall (a : A) (s' : set A), P s' -> P (set_add Aeq_dec a s')) ->
|
||||
forall (s : set A), P s.
|
||||
Proof. Admitted.
|
||||
|
||||
Lemma add_pc_safe_step : forall {n} (inp : input n) (pc : fin (S n)) i is acc st',
|
||||
step_noswap inp (pc, is, acc) st' ->
|
||||
exists st'', step_noswap inp (pc, (set_add Fin.eq_dec i is), acc) st''.
|
||||
Proof.
|
||||
intros n inp pc' i is acc st' Hstep.
|
||||
inversion Hstep.
|
||||
- eexists. apply step_noswap_add. apply H4.
|
||||
apply set_mem_correct2. apply set_add_intro1.
|
||||
apply set_mem_correct1 with Fin.eq_dec. assumption.
|
||||
- eexists. eapply step_noswap_nop. apply H4.
|
||||
apply set_mem_correct2. apply set_add_intro1.
|
||||
apply set_mem_correct1 with Fin.eq_dec. assumption.
|
||||
- eexists. eapply step_noswap_jmp. apply H3.
|
||||
apply set_mem_correct2. apply set_add_intro1.
|
||||
apply set_mem_correct1 with Fin.eq_dec. assumption.
|
||||
apply H6.
|
||||
Qed.
|
||||
|
||||
Lemma remove_pc_safe_run : forall {n} (inp : input n) i pc v acc st',
|
||||
run_noswap inp (pc, set_add Fin.eq_dec i v, acc) st' ->
|
||||
exists st'', run_noswap inp (pc, v, acc) st''.
|
||||
Proof.
|
||||
intros n inp i pc v acc st' Hr.
|
||||
dependent induction Hr.
|
||||
- eexists. eapply run_noswap_ok.
|
||||
- eexists. eapply run_noswap_fail.
|
||||
apply set_mem_complete1 in H.
|
||||
apply set_mem_complete2.
|
||||
intros Hin. apply H. apply set_add_intro. right. apply Hin.
|
||||
- inversion H; subst; destruct (set_mem Fin.eq_dec pc' v) eqn:Hm.
|
||||
Admitted.
|
||||
|
||||
Lemma add_pc_safe_run : forall {n} (inp : input n) i pc v acc st',
|
||||
run_noswap inp (pc, v, acc) st' ->
|
||||
exists st'', run_noswap inp (pc, (set_add Fin.eq_dec i v), acc) st''.
|
||||
Proof.
|
||||
intros n inp i pc v acc st' Hr.
|
||||
destruct (set_mem Fin.eq_dec i v) eqn:Hm.
|
||||
(* If i is already in the set, nothing changes. *)
|
||||
rewrite set_add_idempotent.
|
||||
exists st'. assumption. assumption.
|
||||
(* Otherwise, the behavior might have changed.. *)
|
||||
destruct (fin_big_or_small pc).
|
||||
- (* If we're done, we're done no matter what. *)
|
||||
eexists. rewrite H. eapply run_noswap_ok.
|
||||
- (* The PC points somewhere inside. We tried (and maybe failed)
|
||||
to execute and instruction. The challenging part
|
||||
is that adding i may change the outcome from 'fail' to 'ok' *)
|
||||
destruct H as [pc' Heq].
|
||||
generalize dependent st'.
|
||||
induction v using (@set_induction (fin n) Fin.eq_dec);
|
||||
intros st' Hr.
|
||||
+ (* Our set of valid states is nearly empty. One step,
|
||||
and it runs dry. *)
|
||||
simpl. destruct (Fin.eq_dec pc' i) eqn:Heq_dec.
|
||||
* (* The PC is the one allowed state. *)
|
||||
remember (nth inp pc') as h. destruct h. destruct o.
|
||||
{ (* Addition. *)
|
||||
destruct (fin_big_or_small (FS pc')).
|
||||
- (* The additional step puts as at the end. *)
|
||||
eexists. eapply run_noswap_trans.
|
||||
+ rewrite Heq. apply step_noswap_add.
|
||||
symmetry. apply Heqh. simpl. rewrite Heq_dec. reflexivity.
|
||||
+ rewrite H. apply run_noswap_ok.
|
||||
- (* The additional step puts us somewhere else. *)
|
||||
destruct H as [f' H].
|
||||
eexists. eapply run_noswap_trans.
|
||||
+ rewrite Heq. apply step_noswap_add.
|
||||
symmetry. apply Heqh. simpl. rewrite Heq_dec. reflexivity.
|
||||
+ rewrite H. apply run_noswap_fail.
|
||||
simpl. rewrite Heq_dec. reflexivity. }
|
||||
{ (* No-op *) admit. }
|
||||
{ (* Jump*) admit. }
|
||||
* (* The PC is not. We're done. *)
|
||||
eexists. rewrite Heq. eapply run_noswap_fail.
|
||||
simpl. rewrite Heq_dec. reflexivity.
|
||||
+ destruct (set_mem Fin.eq_dec a v) eqn:Hm'.
|
||||
* unfold fin. rewrite (set_add_idempotent Fin.eq_dec a).
|
||||
|
||||
|
||||
{ apply step_noswap_nop.
|
||||
- symmetry. apply Heqh.
|
||||
- simpl. rewrite Heq_dec. reflexivity. }
|
||||
|
||||
(*
|
||||
dependent induction Hr; subst.
|
||||
+ (* We can't be in the OK state, since we already covered
|
||||
that earlier. *)
|
||||
destruct n. inversion pc'.
|
||||
apply weaken_neq_to_fin in Heq as [].
|
||||
+ apply weaken_one_inj in Heq as Hs. subst.
|
||||
destruct (Fin.eq_dec pc'0 i) eqn:Heq_dec.
|
||||
* admit.
|
||||
* eexists. eapply run_noswap_fail.
|
||||
assert (~set_In pc'0 v).
|
||||
{ apply (set_mem_complete1 Fin.eq_dec). assumption. }
|
||||
assert (~set_In pc'0 (List.cons i List.nil)).
|
||||
{ simpl. intros [Heq'|[]]. apply n0. auto. }
|
||||
assert (~set_In pc'0 (set_union Fin.eq_dec v (List.cons i List.nil))).
|
||||
{ intros Hin. apply set_union_iff in Hin as [Hf|Hf].
|
||||
- apply H0. apply Hf.
|
||||
- apply H1. apply Hf. }
|
||||
simpl in H2. apply set_mem_complete2. assumption.
|
||||
+ apply (add_pc_safe_step _ _ i) in H as [st''' Hr'].
|
||||
eexists. eapply run_noswap_trans.
|
||||
apply Hr'. destruct st' as [[pc'' v''] acc''].
|
||||
specialize (IHHr i pc'' v'' acc'').*)
|
||||
|
||||
|
||||
(* intros n inp i pc v.
|
||||
generalize dependent i.
|
||||
generalize dependent pc.
|
||||
induction v; intros pc i acc st Hr.
|
||||
- inversion Hr; subst.
|
||||
+ eexists. apply run_noswap_ok.
|
||||
+ destruct (Fin.eq_dec pc' i) eqn:Heq_dec.
|
||||
* admit.
|
||||
* eexists. apply run_noswap_fail.
|
||||
simpl. rewrite Heq_dec. reflexivity.
|
||||
+ inversion H; subst; simpl in H7; inversion H7.
|
||||
- inversion Hr; subst.
|
||||
+ eexists. apply run_noswap_ok.
|
||||
+ destruct (Fin.eq_dec pc' i) eqn:Heq_dec.
|
||||
* admit.
|
||||
* eexists. apply run_noswap_fail.
|
||||
simpl. rewrite Heq_dec. simpl in H4.
|
||||
apply H4.
|
||||
+
|
||||
destruct (nth inp pc') as [op t]. *)
|
||||
|
||||
Admitted.
|
||||
|
||||
Theorem valid_input_terminates : forall n (inp : input n) st,
|
||||
valid_input inp -> exists st', run_noswap inp st st'.
|
||||
Proof.
|
||||
intros n inp st.
|
||||
destruct st as [[pc is] acc].
|
||||
generalize dependent inp.
|
||||
generalize dependent pc.
|
||||
generalize dependent acc.
|
||||
induction is using (@set_induction (fin n) Fin.eq_dec); intros acc pc inp Hv;
|
||||
(* The PC may point past the end of the
|
||||
array, or it may not. *)
|
||||
destruct (fin_big_or_small pc);
|
||||
(* No matter what, if it's past the end
|
||||
of the array, we're done, *)
|
||||
try (eexists (pc, _, acc); rewrite H; apply run_noswap_ok).
|
||||
- (* It's not past the end of the array,
|
||||
and the 'allowed' list is empty.
|
||||
Evaluation fails. *)
|
||||
destruct H as [f' Heq].
|
||||
exists (pc, Datatypes.nil, acc).
|
||||
rewrite Heq. apply run_noswap_fail. reflexivity.
|
||||
- (* We're not past the end of the array. However,
|
||||
adding a new valid index still guarantees
|
||||
evaluation terminates. *)
|
||||
specialize (IHis acc pc inp Hv) as [st' Hr].
|
||||
apply add_pc_safe_run with st'. assumption.
|
||||
Qed.
|
||||
|
||||
(*
|
||||
(* It's not past the end of the array,
|
||||
and we're in the inductive case on is. *)
|
||||
destruct H as [pc' Heq].
|
||||
destruct (Fin.eq_dec pc' a) eqn:Heq_dec.
|
||||
+ (* This PC is allowed. *)
|
||||
(* That must mean we have a non-empty list. *)
|
||||
remember (nth inp pc') as h. destruct h as [op t].
|
||||
(* Unfortunately, we can't do eexists at the top
|
||||
level, since that will mean the final state
|
||||
has to be the same for every op. *)
|
||||
destruct op.
|
||||
(* Addition. *)
|
||||
{ destruct (IHis (M.add acc t) (FS pc') inp Hv) as [st' Htrans].
|
||||
eexists. eapply run_noswap_trans.
|
||||
rewrite Heq. apply step_noswap_add.
|
||||
- symmetry. apply Heqh.
|
||||
- simpl. rewrite Heq_dec. reflexivity.
|
||||
- simpl. rewrite Heq_dec. apply Htrans. }
|
||||
(* No-ops *)
|
||||
{ destruct (IHis acc (FS pc') inp Hv) as [st' Htrans].
|
||||
eexists. eapply run_noswap_trans.
|
||||
rewrite Heq. apply step_noswap_nop with t.
|
||||
- symmetry. apply Heqh.
|
||||
- simpl. rewrite Heq_dec. reflexivity.
|
||||
- simpl. rewrite Heq_dec. apply Htrans. }
|
||||
(* Jump. *)
|
||||
{ (* A little more interesting. We need to know that the jump is valid. *)
|
||||
assert (Hv' : valid_inst (jmp, t) pc').
|
||||
{ specialize (Hv pc'). rewrite <- Heqh in Hv. assumption. }
|
||||
inversion Hv'.
|
||||
(* Now, proceed as usual. *)
|
||||
destruct (IHis acc f' inp Hv) as [st' Htrans].
|
||||
eexists. eapply run_noswap_trans.
|
||||
rewrite Heq. apply step_noswap_jmp with t.
|
||||
- symmetry. apply Heqh.
|
||||
- simpl. rewrite Heq_dec. reflexivity.
|
||||
- apply H0.
|
||||
- simpl. rewrite Heq_dec. apply Htrans. }
|
||||
+ (* The top PC is not allowed. *)
|
||||
specialize (IHis acc pc inp Hv) as [st' Hr].
|
||||
apply add_pc_safe_run with st'. assumption. *)
|
||||
Qed.
|
||||
|
||||
|
||||
(* Stoppped here. *)
|
||||
Admitted. *)
|
||||
End DayEight.
|
||||
|
Loading…
Reference in New Issue
Block a user