Add day 1 part 1 formalized in Coq.
This commit is contained in:
parent
aef1ed2808
commit
aee4c67e43
156
day1.v
Normal file
156
day1.v
Normal file
@ -0,0 +1,156 @@
|
||||
Require Import Coq.Sorting.Mergesort.
|
||||
Require Import Coq.Lists.List.
|
||||
Require Import Coq.Program.Wf.
|
||||
Require Import Coq.Arith.PeanoNat.
|
||||
Require Import Omega.
|
||||
Require Import ExtrHaskellBasic.
|
||||
|
||||
Definition has_pair (t : nat) (is : list nat) : Prop :=
|
||||
exists n1 n2 : nat, n1 <> n2 /\ In n1 is /\ In n2 is /\ n1 + n2 = t.
|
||||
|
||||
Fixpoint find_matching (is : list nat) (total : nat) (x : nat) : option nat :=
|
||||
match is with
|
||||
| nil => None
|
||||
| cons y ys =>
|
||||
if Nat.eqb (x + y) total
|
||||
then Some y
|
||||
else find_matching ys total x
|
||||
end.
|
||||
|
||||
Fixpoint find_sum (is : list nat) (total : nat) : option (nat * nat) :=
|
||||
match is with
|
||||
| nil => None
|
||||
| cons x xs =>
|
||||
match find_matching xs total x with
|
||||
| None => find_sum xs total (* Was buggy! *)
|
||||
| Some y => Some (x, y)
|
||||
end
|
||||
end.
|
||||
|
||||
Lemma find_matching_correct : forall is k x y,
|
||||
find_matching is k x = Some y -> x + y = k.
|
||||
Proof.
|
||||
intros is. induction is;
|
||||
intros k x y Hev.
|
||||
- simpl in Hev. inversion Hev.
|
||||
- simpl in Hev. destruct (Nat.eqb (x+a) k) eqn:Heq.
|
||||
+ injection Hev as H; subst.
|
||||
apply EqNat.beq_nat_eq. auto.
|
||||
+ apply IHis. assumption.
|
||||
Qed.
|
||||
|
||||
Lemma find_matching_skip : forall k x y i is,
|
||||
find_matching is k x = Some y -> find_matching (cons i is) k x = Some y.
|
||||
Proof.
|
||||
intros k x y i is Hsmall.
|
||||
simpl. destruct (Nat.eqb (x+i) k) eqn:Heq.
|
||||
- apply find_matching_correct in Hsmall.
|
||||
symmetry in Heq. apply EqNat.beq_nat_eq in Heq.
|
||||
assert (i = y). { omega. } rewrite H. reflexivity.
|
||||
- assumption.
|
||||
Qed.
|
||||
|
||||
Lemma find_matching_works : forall is k x y, In y is /\ x + y = k ->
|
||||
find_matching is k x = Some y.
|
||||
Proof.
|
||||
intros is. induction is;
|
||||
intros k x y [Hin Heq].
|
||||
- inversion Hin.
|
||||
- inversion Hin.
|
||||
+ subst a. simpl. Search Nat.eqb.
|
||||
destruct (Nat.eqb_spec (x+y) k).
|
||||
* reflexivity.
|
||||
* exfalso. apply n. assumption.
|
||||
+ apply find_matching_skip. apply IHis.
|
||||
split; assumption.
|
||||
Qed.
|
||||
|
||||
Theorem find_sum_works :
|
||||
forall k is, has_pair k is ->
|
||||
exists x y, (find_sum is k = Some (x, y) /\ x + y = k).
|
||||
Proof.
|
||||
intros k is. generalize dependent k.
|
||||
induction is; intros k [x' [y' [Hneq [Hinx [Hiny Hsum]]]]].
|
||||
- (* is is empty. But x is in is! *)
|
||||
inversion Hinx.
|
||||
- (* is is not empty. *)
|
||||
inversion Hinx.
|
||||
+ (* x is the first element. *)
|
||||
subst a. inversion Hiny.
|
||||
* (* y is also the first element; but this is impossible! *)
|
||||
exfalso. apply Hneq. apply H.
|
||||
* (* y is somewhere in the rest of the list.
|
||||
We've proven that we will find it! *)
|
||||
exists x'. simpl.
|
||||
erewrite find_matching_works.
|
||||
{ exists y'. split. reflexivity. assumption. }
|
||||
{ split; assumption. }
|
||||
+ (* x is not the first element. *)
|
||||
inversion Hiny.
|
||||
* (* y is the first element,
|
||||
so x is somewhere in the rest of the list.
|
||||
Again, we've proven that we can find it. *)
|
||||
subst a. exists y'. simpl.
|
||||
erewrite find_matching_works.
|
||||
{ exists x'. split. reflexivity. rewrite plus_comm. assumption. }
|
||||
{ split. assumption. rewrite plus_comm. assumption. }
|
||||
* (* y is not the first element, either.
|
||||
Of course, there could be another matching pair
|
||||
starting with a. Otherwise, the inductive hypothesis applies. *)
|
||||
simpl. destruct (find_matching is k a) eqn:Hf.
|
||||
{ exists a. exists n. split.
|
||||
reflexivity.
|
||||
apply find_matching_correct with is. assumption. }
|
||||
{ apply IHis. unfold has_pair. exists x'. exists y'.
|
||||
repeat split; assumption. }
|
||||
Qed.
|
||||
|
||||
Extraction Language Haskell.
|
||||
Extraction "test.hs" find_sum.
|
||||
|
||||
Check find_sum_works.
|
||||
|
||||
(* WIP stuff for 2-pointer solution. *)
|
||||
|
||||
Inductive non_empty {X : Type} : list X -> Prop :=
|
||||
| non_empty_cons : forall x xs, non_empty (cons x xs).
|
||||
|
||||
Lemma nil_empty {X: Type} : ~ @non_empty X nil.
|
||||
Proof. intros H. inversion H. Qed.
|
||||
|
||||
Program Fixpoint last (is : list nat) (H : non_empty is) {measure (length is)} : nat :=
|
||||
match is with
|
||||
| nil => _
|
||||
| cons x nil => x
|
||||
| cons x (cons y xs) => last (cons y xs) _
|
||||
end.
|
||||
Obligation 1.
|
||||
exfalso. apply (nil_empty H).
|
||||
Qed.
|
||||
Obligation 2.
|
||||
apply non_empty_cons.
|
||||
Qed.
|
||||
|
||||
Program Fixpoint drop_last (is : list nat) (H : non_empty is) {measure (length is)} : list nat :=
|
||||
match is with
|
||||
| nil => _
|
||||
| cons x nil => nil
|
||||
| cons x (cons y xs) => cons x (drop_last (cons y xs) _)
|
||||
end.
|
||||
Obligation 1.
|
||||
exfalso. apply (nil_empty H).
|
||||
Qed.
|
||||
Obligation 2.
|
||||
apply non_empty_cons.
|
||||
Qed.
|
||||
|
||||
Program Fixpoint find_pair (is : list nat) (t : nat) : option (nat * nat) :=
|
||||
match is with
|
||||
| nil => None
|
||||
| cons x nil => None
|
||||
| cons x (cons y xs) => Some (x, last (cons y xs) _)
|
||||
end.
|
||||
Obligation 1.
|
||||
apply non_empty_cons.
|
||||
Qed.
|
||||
|
Loading…
Reference in New Issue
Block a user