Flail around with this goddamn proof some more.

This commit is contained in:
Danila Fedorin 2020-12-12 20:08:21 -08:00
parent 51a679ec63
commit f0fbba722c

383
day8.v
View File

@ -51,50 +51,12 @@ Module DayEight (Import M:Int).
| FS f' => FS (weaken_one f')
end.
(* One modification: we really want to use 'allowed' addresses,
a set that shrinks as the program continues, rather than 'visited'
addresses, a set that increases as the program continues. *)
Inductive step_noswap {n} : input n -> state n -> state n -> Prop :=
| step_noswap_add : forall inp pc' v acc t,
nth inp pc' = (add, t) ->
set_mem Fin.eq_dec pc' v = true ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, M.add acc t)
| step_noswap_nop : forall inp pc' v acc t,
nth inp pc' = (nop, t) ->
set_mem Fin.eq_dec pc' v = true ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, acc)
| step_noswap_jmp : forall inp pc' pc'' v acc t,
nth inp pc' = (jmp, t) ->
set_mem Fin.eq_dec pc' v = true ->
valid_jump_t pc' t = Some pc'' ->
step_noswap inp (weaken_one pc', v, acc) (pc'', set_remove Fin.eq_dec pc' v, acc).
Fixpoint nat_to_fin (n : nat) : fin (S n) :=
match n with
| O => F1
| S n' => FS (nat_to_fin n')
end.
Inductive run_noswap {n} : input n -> state n -> state n -> Prop :=
| run_noswap_ok : forall inp v acc,
run_noswap inp (nat_to_fin n, v, acc) (nat_to_fin n, v, acc)
| run_noswap_fail : forall inp pc' v acc,
set_mem Fin.eq_dec pc' v = false ->
run_noswap inp (weaken_one pc', v, acc) (weaken_one pc', v, acc)
| run_noswap_trans : forall inp st st' st'',
step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''.
Inductive valid_inst {n} : inst -> fin n -> Prop :=
| valid_inst_add : forall t f, valid_inst (add, t) f
| valid_inst_nop : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (nop, t) f
| valid_inst_jmp : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (jmp, t) f.
(* An input is valid if all its instructions are valid. *)
Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n),
valid_inst (nth inp pc) pc.
Lemma fin_big_or_small : forall {n} (f : fin (S n)),
(f = nat_to_fin n) \/ (exists (f' : fin n), f = weaken_one f').
Proof.
@ -115,6 +77,311 @@ Module DayEight (Import M:Int).
reflexivity.
Qed.
Lemma weaken_one_inj : forall n (f1 f2 : fin n),
(weaken_one f1 = weaken_one f2 -> f1 = f2).
Proof.
remember (fun {n} (a b : fin n) => weaken_one a = weaken_one b -> a = b) as P.
(* Base case for rect2 *)
assert (forall n, @P (S n) F1 F1).
{rewrite HeqP. intros n Heq. reflexivity. }
(* 'Impossible' cases for rect2. *)
assert (forall {n} (f : fin n), P (S n) F1 (FS f)).
{rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. }
assert (forall {n} (f : fin n), P (S n) (FS f) F1).
{rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. }
(* Recursive case for rect2. *)
assert (forall {n} (f g : fin n), P n f g -> P (S n) (FS f) (FS g)).
{rewrite HeqP. intros n f g IH Heq.
simpl in Heq. injection Heq as Heq'.
apply inj_pair2_eq_dec in Heq'.
- rewrite IH. reflexivity. assumption.
- apply eq_nat_dec. }
(* Actually apply recursion. *)
(* This can't be _the_ way to do this. *)
intros n.
specialize (@Fin.rect2 P H H0 H1 H2 n) as Hind.
rewrite HeqP in Hind. apply Hind.
Qed.
Lemma weaken_neq_to_fin : forall {n} (f : fin (S n)),
nat_to_fin (S n) <> weaken_one f.
Proof.
apply Fin.rectS; intros n Heq.
- inversion Heq.
- intros IH. simpl. intros Heq'.
injection Heq' as Hinj. apply inj_pair2_eq_dec in Hinj.
+ simpl in IH. apply IH. apply Hinj.
+ apply eq_nat_dec.
Qed.
(* One modification: we really want to use 'allowed' addresses,
a set that shrinks as the program continues, rather than 'visited'
addresses, a set that increases as the program continues. *)
Inductive step_noswap {n} : input n -> state n -> state n -> Prop :=
| step_noswap_add : forall inp pc' v acc t,
nth inp pc' = (add, t) ->
set_In pc' v ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, M.add acc t)
| step_noswap_nop : forall inp pc' v acc t,
nth inp pc' = (nop, t) ->
set_In pc' v ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_remove Fin.eq_dec pc' v, acc)
| step_noswap_jmp : forall inp pc' pc'' v acc t,
nth inp pc' = (jmp, t) ->
set_In pc' v ->
valid_jump_t pc' t = Some pc'' ->
step_noswap inp (weaken_one pc', v, acc) (pc'', set_remove Fin.eq_dec pc' v, acc).
Inductive done {n} : input n -> state n -> Prop :=
| done_prog : forall inp v acc, done inp (nat_to_fin n, v, acc).
Inductive stuck {n} : input n -> state n -> Prop :=
| stuck_prog : forall inp pc' v acc,
~ set_In pc' v -> stuck inp (weaken_one pc', v, acc).
Inductive run_noswap {n} : input n -> state n -> state n -> Prop :=
| run_noswap_ok : forall inp st, done inp st -> run_noswap inp st st
| run_noswap_fail : forall inp st, stuck inp st -> run_noswap inp st st
| run_noswap_trans : forall inp st st' st'',
step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''.
Inductive valid_inst {n} : inst -> fin n -> Prop :=
| valid_inst_add : forall t f, valid_inst (add, t) f
| valid_inst_nop : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (nop, t) f
| valid_inst_jmp : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (jmp, t) f.
(* An input is valid if all its instructions are valid. *)
Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n),
valid_inst (nth inp pc) pc.
Section ValidInput.
Variable n : nat.
Variable inp : input n.
Hypothesis Hv : valid_input inp.
Lemma step_if_possible : forall pcs v acc,
set_In pcs v ->
exists pc' acc', step_noswap inp (weaken_one pcs, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc').
Proof.
intros pcs v acc Hin.
remember (nth inp pcs) as instr. destruct instr as [op t]. destruct op.
+ exists (FS pcs). exists (M.add acc t). apply step_noswap_add; auto.
+ exists (FS pcs). exists acc. apply step_noswap_nop with t; auto.
+ unfold valid_input in Hv. specialize (Hv pcs).
rewrite <- Heqinstr in Hv. inversion Hv; subst.
exists f'. exists acc. apply step_noswap_jmp with t; auto.
Qed.
Theorem valid_input_progress : forall pc v acc,
(pc = nat_to_fin n /\ done inp (pc, v, acc)) \/
exists pcs, pc = weaken_one pcs /\
((~ set_In pcs v /\ stuck inp (pc, v, acc)) \/
(exists pc' acc', set_In pcs v /\ step_noswap inp (pc, v, acc) (pc', set_remove Fin.eq_dec pcs v, acc'))).
Proof.
intros pc v acc.
(* Have we reached the end? *)
destruct (fin_big_or_small pc).
(* We're at the end, so we're done. *)
left. rewrite H. split. reflexivity. apply done_prog.
(* We're not at the end. Is the PC valid? *)
right. destruct H as [pcs H]. exists pcs. rewrite H. split. reflexivity.
destruct (set_In_dec Fin.eq_dec pcs v).
- (* It is. *)
right.
destruct (step_if_possible pcs v acc) as [pc' [acc' Hstep]]; auto.
exists pc'. exists acc'. split; auto.
- (* It i not. *)
left. split; auto. apply stuck_prog; auto.
Qed.
Theorem run_ok_or_fail : forall st st',
run_noswap inp st st' ->
(exists v acc, st' = (nat_to_fin n, v, acc) /\ done inp st') \/
(exists pcs v acc, st' = (weaken_one pcs, v, acc) /\ stuck inp st').
Proof.
intros st st' Hr.
induction Hr.
- left. inversion H; subst. exists v. exists acc. auto.
- right. inversion H; subst. exists pc'. exists v. exists acc. auto.
- apply IHHr; auto.
Qed.
Theorem set_induction {A : Type}
(Aeq_dec : forall (x y : A), { x = y } + { x <> y })
(P : set A -> Prop) :
P (@empty_set A) -> (forall a st, P (set_remove Aeq_dec a st) -> P st) ->
forall st, P st.
Proof. Admitted.
(* Theorem add_terminates_later : forall pcs a v acc,
List.NoDup v -> pcs <> a ->
(forall pc' acc', exists st', run_noswap inp (pc', set_remove Fin.eq_dec a v, acc') st') ->
exists st', run_noswap inp (weaken_one pcs, v, acc) st'.
Proof.
intros pcs a v acc Hnd Hneq He.
assert (exists st', run_noswap inp (weaken_one pcs, set_remove Fin.eq_dec a v, acc) st').
{ specialize (He (weaken_one pcs) acc). apply He. }
destruct H as [st' Hr].
inversion Hr; subst.
- inversion H. destruct n. inversion pcs. apply weaken_neq_to_fin in H2 as [].
- inversion H; subst. apply weaken_one_inj in H0. subst.
eexists. eapply run_noswap_fail. apply stuck_prog.
intros Hin. apply H2. apply set_remove_3; auto.
-
inversion H; subst; apply weaken_one_inj in H1; subst.
+ eexists. eapply run_noswap_trans. apply step_noswap_add.
* apply H6.
* apply (@set_remove_1 _ Fin.eq_dec pcs a v H7).
*
destruct He as [st' Hr].
dependent induction Hr.
- inversion H. destruct n. inversion pcs. apply weaken_neq_to_fin in H2 as [].
- inversion H; subst. apply weaken_one_inj in H0. subst.
eexists. eapply run_noswap_fail. apply stuck_prog.
intros Hin. apply H2. apply set_remove_3; auto.
- destruct st' as [[pc' v'] a']. *)
Lemma set_remove_comm : forall {A:Type} Aeq_dec a b (st : set A),
set_remove Aeq_dec a (set_remove Aeq_dec b st) = set_remove Aeq_dec b (set_remove Aeq_dec a st).
Admitted.
Theorem remove_pc_safe : forall pc a v acc,
List.NoDup v ->
(exists st', run_noswap inp (pc, v, acc) st') ->
exists st', run_noswap inp (pc, set_remove Fin.eq_dec a v, acc) st'.
Proof.
intros pc a v acc Hnd [st' He].
dependent induction He.
- inversion H; subst.
eexists. apply run_noswap_ok. apply done_prog.
- inversion H; subst.
eexists. apply run_noswap_fail. apply stuck_prog.
intros Contra. apply H2. eapply set_remove_1. apply Contra.
- destruct st' as [[pc' v'] acc'].
inversion H; subst; destruct (Fin.eq_dec pc'0 a); subst.
+ eexists. apply run_noswap_fail. apply stuck_prog.
intros Contra. apply set_remove_2 in Contra; auto.
+ edestruct IHHe; auto. apply set_remove_nodup; auto.
eexists. eapply run_noswap_trans.
* apply step_noswap_add. apply H3. apply set_remove_iff; auto.
* rewrite set_remove_comm. apply H0.
+ eexists. apply run_noswap_fail. apply stuck_prog.
intros Contra. apply set_remove_2 in Contra; auto.
+ edestruct IHHe; auto. apply set_remove_nodup; auto.
eexists. eapply run_noswap_trans.
* apply step_noswap_nop with t0. apply H3. apply set_remove_iff; auto.
* rewrite set_remove_comm. apply H0.
+ eexists. apply run_noswap_fail. apply stuck_prog.
intros Contra. apply set_remove_2 in Contra; auto.
+ edestruct IHHe; auto. apply set_remove_nodup; auto.
eexists. eapply run_noswap_trans.
* apply step_noswap_jmp with t0. apply H5. apply set_remove_iff; auto.
apply H9.
* rewrite set_remove_comm. apply H0.
Qed.
Theorem valid_input_terminates : forall pc v acc,
List.NoDup v -> exists st', run_noswap inp (pc, v, acc) st'.
Proof.
intros pc v acc.
generalize dependent pc. generalize dependent acc.
induction v as [|a v] using (@set_induction _ Fin.eq_dec); intros acc pc Hnd.
- destruct (valid_input_progress pc (empty_set _) acc) as [|[pcs [Hpc []]]].
+ (* The program is done at this PC. *)
destruct H as [Hpc Hd].
eexists. apply run_noswap_ok. auto.
+ (* The PC is not done, so we must have failed. *)
destruct H as [Hin Hst].
eexists. apply run_noswap_fail. auto.
+ (* The program can't possibly take a step if
it's not done and the set of valid PCs is
empty. This case is absurd. *)
destruct H as [pc' [acc' [Hin Hstep]]].
inversion Hstep; subst; inversion H6.
- (* How did the program terminate? *)
destruct (valid_input_progress pc (set_remove Fin.eq_dec a v) acc) as [|[pcs H]].
+ (* We were done without a, so we're still done now. *)
destruct H as [Hpc Hd]. rewrite Hpc.
eexists. apply run_noswap_ok. apply done_prog.
+ (* We were not done without a. *)
destruct H as [Hw H].
(* Is a equal to the current address? *)
destruct (Fin.eq_dec pcs a) as [Heq_dec|Heq_dec].
* (* a is equal to the current address. Now, we can resume,
even though we couldn't have before. *)
subst. destruct H.
{ destruct (set_In_dec Fin.eq_dec a v).
- destruct (step_if_possible a v acc s) as [pc' [acc' Hstep]].
destruct (IHv acc' pc') as [st' Hr].
apply set_remove_nodup. auto.
exists st'. eapply run_noswap_trans. apply Hstep. apply Hr.
- eexists. apply run_noswap_fail. apply stuck_prog. assumption. }
{ destruct H as [pc' [acc' [Hf]]].
exfalso. apply set_remove_2 in Hf. apply Hf. auto. auto. }
* (* a is not equal to the current address.
This case is not straightforward. *)
subst. destruct H.
{ (* We were stuck without a, and since PC is not a, we're no less
stuck now. *)
destruct H. eexists. eapply run_noswap_fail. apply stuck_prog.
intros Hin. apply H. apply set_remove_iff; auto. }
{ (* We could move on without a. We can move on still. *)
destruct H as [pc' [acc' [Hin Hs]]].
destruct (step_if_possible pcs v acc) as [pc'' [acc'' Hs']].
- apply (set_remove_1 Fin.eq_dec pcs a v Hin).
- eexists. eapply run_noswap_trans. apply Hs'.
destruct (IHv acc'' pc'') as [st' Hr].
+ apply set_remove_nodup; auto.
+ specialize (IHv acc'' pc'') as IH.
Admitted.
(* specialize (IHv acc pc (set_remove_nodup Fin.eq_dec a Hnd)) as [st' Hr].
dependent induction Hr; subst.
{ inversion H0. destruct n. inversion pcs. apply weaken_neq_to_fin in H3 as []. }
{ destruct H.
- eexists. apply run_noswap_fail. apply stuck_prog.
intros Hin. specialize (set_remove_3 Fin.eq_dec v Hin Heq_dec) as Hin'.
destruct H. apply H. apply Hin'.
- destruct H as [pc' [acc' [Hin Hstep]]].
inversion H0; subst. apply weaken_one_inj in H. subst.
exfalso. apply H2. apply Hin. }
{ destruct H.
- destruct H as [Hin Hst].
inversion H0; subst; apply weaken_one_inj in H; subst;
exfalso; apply Hin; assumption.
- assert (weaken_one pcs = weaken_one pcs) as Hrefl by reflexivity.
specialize (IHHr Hv0 (weaken_one pcs) Hrefl acc v Hnd a (or_intror H) Heq_dec Hv).
apply IHHr.
(* We were broken without a, but now we could be working again. *)
destruct H as [Hin Hst]. rewrite Hpc. admit.
+ (* We could make a step without the a. We can still do so now. *)
destruct H as [pc' [acc' [Hin Hstep]]].
destruct (IHv acc pc) as [st' Hr]. inversion Hr.
* inversion H; subst.
destruct n. inversion pcs. apply weaken_neq_to_fin in H5 as [].
* inversion H; subst.
apply weaken_one_inj in H3. subst.
exfalso. apply H5. apply Hin.
* subst. apply set_remove_1 in Hin.
destruct (step_if_possible pcs v acc Hin) as [pc'' [acc'' Hstep']].
eexists. eapply run_noswap_trans.
apply Hstep'. specialize (IHv acc'' pc'') as [st''' Hr'].
destruct (fin_big_or_small pc).
(* If we're at the end, we're done. *)
eexists. rewrite H. eapply run_noswap_ok.
(* We're not at the end. *) *)
End ValidInput.
(*
Lemma set_add_idempotent : forall {A:Type}
(Aeq_dec : forall x y : A, { x = y } + { x <> y })
(a : A) (s : set A), set_mem Aeq_dec a s = true -> set_add Aeq_dec a s = s.
@ -169,44 +436,6 @@ Module DayEight (Import M:Int).
forall (s : set A), P s.
Proof. Admitted.
Lemma weaken_one_inj : forall n (f1 f2 : fin n),
(weaken_one f1 = weaken_one f2 -> f1 = f2).
Proof.
remember (fun {n} (a b : fin n) => weaken_one a = weaken_one b -> a = b) as P.
(* Base case for rect2 *)
assert (forall n, @P (S n) F1 F1).
{rewrite HeqP. intros n Heq. reflexivity. }
(* 'Impossible' cases for rect2. *)
assert (forall {n} (f : fin n), P (S n) F1 (FS f)).
{rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. }
assert (forall {n} (f : fin n), P (S n) (FS f) F1).
{rewrite HeqP. intros n f Heq. simpl in Heq. inversion Heq. }
(* Recursive case for rect2. *)
assert (forall {n} (f g : fin n), P n f g -> P (S n) (FS f) (FS g)).
{rewrite HeqP. intros n f g IH Heq.
simpl in Heq. injection Heq as Heq'.
apply inj_pair2_eq_dec in Heq'.
- rewrite IH. reflexivity. assumption.
- apply eq_nat_dec. }
(* Actually apply recursion. *)
(* This can't be _the_ way to do this. *)
intros n.
specialize (@Fin.rect2 P H H0 H1 H2 n) as Hind.
rewrite HeqP in Hind. apply Hind.
Qed.
Lemma weaken_neq_to_fin : forall {n} (f : fin (S n)),
nat_to_fin (S n) <> weaken_one f.
Proof.
apply Fin.rectS; intros n Heq.
- inversion Heq.
- intros IH. simpl. intros Heq'.
injection Heq' as Hinj. apply inj_pair2_eq_dec in Hinj.
+ simpl in IH. apply IH. apply Hinj.
+ apply eq_nat_dec.
Qed.
Lemma add_pc_safe_step : forall {n} (inp : input n) (pc : fin (S n)) i is acc st',
step_noswap inp (pc, is, acc) st' ->
exists st'', step_noswap inp (pc, (set_add Fin.eq_dec i is), acc) st''.
@ -413,5 +642,5 @@ Module DayEight (Import M:Int).
(* Stoppped here. *)
Admitted.
Admitted. *)
End DayEight.