Compare commits

...

5 Commits

7 changed files with 284 additions and 34 deletions

36
console.cr Normal file
View File

@ -0,0 +1,36 @@
def parse(input)
input.lines.map do |s|
code, int = s.split(" ")
{code, int.to_i32}
end
end
def run(prog)
acc = 0
pc = 0
visited = Set(Int32).new
input = Channel(Int32).new
output = Channel({Symbol, Int32}).new
spawn do
loop do
if pc >= prog.size
output.send({:term, acc})
break
elsif visited.includes? pc
output.send({:inf, acc})
break
end
visited << pc
code, int = prog[pc]
case code
when "acc"
acc += int
when "jmp"
pc += int - 1
end
pc += 1
end
end
{input, output}
end

37
day10.cr Normal file
View File

@ -0,0 +1,37 @@
require "advent"
INPUT = input(2020, 10).lines.map(&.to_i32).sort!
def part1(input)
diff_1 = 0
diff_3 = 0
curr = 0
input << (input.max + 3)
input.each do |i|
diff_1 += 1 if (i - curr) == 1
diff_3 += 1 if (i - curr) == 3
curr = i
end
puts diff_1 * diff_3
end
def count_ways(input, prev, index, mem, indent = 0)
if m = mem[{prev, index}]?
return m
end
return 0_i64 if input[index] - prev > 3 || index >= input.size
return 1_i64 if index == input.size - 1
total = count_ways(input, input[index], index+1, mem, indent + 1)
total += count_ways(input, prev, index+1, mem, indent + 1)
mem[{prev, index}] = total
return total
end
def part2(input)
input << (input.max + 3)
count_ways(input, 0, 0, {} of {Int32, Int32} => Int64)
end
puts part1(INPUT.clone)
puts part2(INPUT.clone)

64
day11.cr Normal file
View File

@ -0,0 +1,64 @@
require "advent"
INPUT = input(2020, 11).lines.map(&.chars)
abstract class Search
def search(current, x, y, dx, dy)
x, y = x + dx, y + dy
return 0 if y < 0 || y >= current.size
return 0 if x < 0 || x >= current[y].size
search_impl(current,x,y,dx,dy)
end
abstract def search_impl(current, x, y, dx, dy)
end
class FirstSearch < Search
def search_impl(current, x, y, dx, dy)
return current[y][x] == '#' ? 1 : 0
end
end
class SecondSearch < Search
def search_impl(current, x, y, dx, dy)
return 1 if current[y][x] == '#'
return 0 if current[y][x] == 'L'
return search(current, x, y, dx, dy)
end
end
DIRS = [{-1,-1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1,1}]
def step(current, step, check, n)
current.each_with_index do |row, y|
row.each_with_index do |seat, x|
step[y][x] = current[y][x]
count = DIRS.sum do |dx, dy|
check.search(current, x, y, dx, dy)
end
step[y][x] = 'L' if seat == '#' && count >= n
step[y][x] = '#' if seat == 'L' && count == 0
end
end
{step, current}
end
def run(input, search, n)
current = input
step = input.clone
loop do
current, step = step(current, step, search, n)
break if current.zip_with(step) { |l, r| l == r }.all?
end
current.sum(&.count(&.==('#')))
end
def part1(input)
run(input, FirstSearch.new, 4)
end
def part2(input)
run(input, SecondSearch.new, 5)
end
puts part1(INPUT.clone)
puts part2(INPUT.clone)

34
day8.cr
View File

@ -1,41 +1,21 @@
require "advent"
INPUT = input(2020, 8).lines.map do |s|
code, int = s.split(" ")
{code, int.to_i32}
end
require "./console.cr"
def run(prog)
acc = 0
pc = 0
visited = Set(Int32).new
loop do
return {:term, acc} if pc >= prog.size
return {:inf, acc} if visited.includes? pc
visited << pc
code, int = prog[pc]
case code
when "acc"
acc += int
when "jmp"
pc += int - 1
end
pc += 1
end
end
INPUT = input(2020, 8)
def part1
run(INPUT)[1]
run(parse(INPUT))[1].receive[1]
end
def part2
jnp = INPUT.find_indices { |e| e[0] == "jmp" || e[0] == "nop" }
input = parse(INPUT)
jnp = input.find_indices { |e| e[0] == "jmp" || e[0] == "nop" }
jnp.each do |i|
prog = INPUT.clone
prog = input.clone
op, int = prog[i]
prog[i] = {op.tr("jmpnop", "nopjmp"), int}
code, acc = run(prog)
code, acc = run(prog)[1].receive
return acc if code == :term
end
end

98
day8.v Normal file
View File

@ -0,0 +1,98 @@
Require Import Coq.ZArith.Int.
Require Import Coq.Lists.ListSet.
Require Import Coq.Vectors.VectorDef.
Require Import Coq.Vectors.Fin.
Module DayEight (Import M:Int).
(* We need to coerce natural numbers into integers to add them. *)
Parameter nat_to_t : nat -> t.
(* We need a way to convert integers back into finite sets. *)
Parameter clamp : forall {n}, t -> option (Fin.t n).
Definition fin := Fin.t.
(* The opcode of our instructions. *)
Inductive opcode : Type :=
| add
| nop
| jmp.
(* The result of running a program is either the accumulator
or an infinite loop error. In the latter case, we return the
set of instructions that we tried. *)
Inductive run_result {n : nat} : Type :=
| Ok : t -> run_result
| Fail : set (fin n) -> run_result.
Definition state n : Type := (fin (S n) * set (fin n) * t).
(* An instruction is a pair of an opcode and an argument. *)
Definition inst : Type := (opcode * t).
(* An input is a bounded list of instructions. *)
Definition input (n : nat) := VectorDef.t inst n.
(* 'indices' represents the list of instruction
addresses, which are used for calculating jumps. *)
Definition indices (n : nat) := VectorDef.t (fin n) n.
(* Compute the destination jump index, an integer. *)
Definition jump_t {n} (pc : fin n) (off : t) : t :=
M.add (nat_to_t (proj1_sig (to_nat pc))) off.
(* Compute a destination index that's valid.
Not all inputs are valid, so this may fail. *)
Definition valid_jump_t {n} (pc : fin n) (off : t) : option (fin (S n)) := @clamp (S n) (jump_t pc off).
Definition weaken_one {n} (f : fin n) : fin (S n).
Proof.
apply (@cast (n + 1)).
+ apply L. apply f.
+ rewrite <- plus_n_Sm. rewrite <- plus_n_O. reflexivity.
Defined.
Inductive step_noswap {n} : input n -> state n -> state n -> Prop :=
| step_noswap_acc : forall inp pc' v acc t,
nth inp pc' = (add, t) ->
~ set_mem Fin.eq_dec pc' v = true ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_add Fin.eq_dec pc' v, M.add acc t)
| step_noswap_nop : forall inp pc' v acc t,
nth inp pc' = (nop, t) ->
~ set_mem Fin.eq_dec pc' v = true ->
step_noswap inp (weaken_one pc', v, acc) (FS pc', set_add Fin.eq_dec pc' v, acc)
| step_noswap_jmp : forall inp pc' pc'' v acc t,
nth inp pc' = (jmp, t) ->
~ set_mem Fin.eq_dec pc' v = true ->
valid_jump_t pc' t = Some pc'' ->
step_noswap inp (weaken_one pc', v, acc) (pc'', set_add Fin.eq_dec pc' v, acc).
Fixpoint nat_to_fin (n : nat) : fin (S n) :=
match n with
| O => F1
| S n' => FS (nat_to_fin n')
end.
Inductive run_noswap {n} : input n -> state n -> state n -> Prop :=
| run_noswap_ok : forall inp v acc,
run_noswap inp (nat_to_fin n, v, acc) (nat_to_fin n, v, acc)
| run_noswap_fail : forall inp pc' v acc,
set_mem Fin.eq_dec pc' v = true ->
run_noswap inp (weaken_one pc', v, acc) (weaken_one pc', v, acc)
| run_noswap_trans : forall inp st st' st'',
step_noswap inp st st' -> run_noswap inp st' st'' -> run_noswap inp st st''.
Inductive valid_inst {n} : inst -> fin n -> Prop :=
| valid_inst_add : forall t f, valid_inst (add, t) f
| valid_inst_nop : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (nop, t) f
| valid_inst_jmp : forall t f f',
valid_jump_t f t = Some f' -> valid_inst (jmp, t) f.
(* An input is valid if all its instructions are valid. *)
Definition valid_input {n} (inp : input n) : Prop := forall (pc : fin n),
valid_inst (nth inp pc) pc.
Theorem valid_input_terminates : forall n (inp : input n) st,
valid_input inp -> exists st', run_noswap inp st st'.
Proof.
(* Stoppped here. *)
Admitted.
End DayEight.

37
day9.cr Normal file
View File

@ -0,0 +1,37 @@
require "advent"
INPUT = input(2020, 9).lines.map(&.to_i64)
def is_sum(is, from, to, n)
if to <= from
return n == 0_i64
end
return is_sum(is, from, to-1, n) || is_sum(is, from, to-1, n-is[to-1])
end
def part1(input)
is = input
i = 25
loop do
return is[i] unless is_sum(is, i-25, i, is[i])
i += 1
end
end
def part2(input, i)
input.each_with_index do |e, j|
next if e == i
acc = i-e
k = j
while acc > 0
k += 1
acc -= input[k]
end
if acc == 0
min, max = input[j..k].minmax
return min+max
end
end
end
p1 = part1(INPUT.clone)
puts part2(INPUT.clone, p1)

View File

@ -1,13 +1,11 @@
require "advent"
INPUT = input(2020, n)#.lines.map(&.chomp)
INPUT = input(2020, n)#.lines.map(&.to_i32)
def part1
input = INPUT.clone
def part1(input)
end
def part2
input = INPUT.clone
def part2(input)
end
part1
part2
puts part1(INPUT.clone)
puts part2(INPUT.clone)