mirror of
https://github.com/DanilaFe/abacus
synced 2024-12-23 16:00:09 -08:00
Remove unused code and functions in StandardPlugin.
This commit is contained in:
parent
68155446b6
commit
87f98228d0
|
@ -184,13 +184,6 @@ public class StandardPlugin extends Plugin {
|
|||
while(left.compareTo(right) > 0);
|
||||
return sum;
|
||||
}
|
||||
/*boolean takeReciprocal = params[0].signum() == 1;
|
||||
params[0] = FUNCTION_ABS.apply(params[0]).negate();
|
||||
NumberInterface sum = sumSeries(params[0], StandardPlugin::getExpSeriesTerm, getNTermsExp(getMaxError(params[0]), params[0]));
|
||||
if (takeReciprocal) {
|
||||
sum = NaiveNumber.ONE.promoteTo(sum.getClass()).divide(sum);
|
||||
}
|
||||
return sum;*/
|
||||
}
|
||||
};
|
||||
/**
|
||||
|
@ -271,7 +264,7 @@ public class StandardPlugin extends Plugin {
|
|||
}
|
||||
};
|
||||
/**
|
||||
* The square root function, sqrt(4) = 2
|
||||
* The square root function.
|
||||
*/
|
||||
public static final Function FUNCTION_SQRT = new Function() {
|
||||
@Override
|
||||
|
@ -289,39 +282,6 @@ public class StandardPlugin extends Plugin {
|
|||
super(manager);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the nth term of the Taylor series (centered at 0) of e^x
|
||||
*
|
||||
* @param n the term required (n >= 0).
|
||||
* @param x the real number at which the series is evaluated.
|
||||
* @return the nth term of the series.
|
||||
*/
|
||||
private static NumberInterface getExpSeriesTerm(int n, NumberInterface x) {
|
||||
return x.intPow(n).divide(OP_FACTORIAL.getFunction().apply((new NaiveNumber(n)).promoteTo(x.getClass())));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of terms needed to evaluate the exponential function (at x)
|
||||
* such that the error is at most maxError.
|
||||
*
|
||||
* @param maxError Maximum error permissible (This should probably be positive.)
|
||||
* @param x where the function is evaluated.
|
||||
* @return the number of terms needed to evaluate the exponential function.
|
||||
*/
|
||||
private static int getNTermsExp(NumberInterface maxError, NumberInterface x) {
|
||||
//We need n such that |x^(n+1)| <= (n+1)! * maxError
|
||||
//The variables LHS and RHS refer to the above inequality.
|
||||
int n = 0;
|
||||
x = FUNCTION_ABS.apply(x);
|
||||
NumberInterface LHS = x, RHS = maxError;
|
||||
while (LHS.compareTo(RHS) > 0) {
|
||||
n++;
|
||||
LHS = LHS.multiply(x);
|
||||
RHS = RHS.multiply(new NaiveNumber(n + 1).promoteTo(RHS.getClass()));
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x.
|
||||
*
|
||||
|
|
Loading…
Reference in New Issue
Block a user