mirror of
https://github.com/DanilaFe/abacus
synced 2026-01-25 16:15:19 +00:00
Compare commits
5 Commits
stoppable
...
rewrite-ex
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f97d16c640 | ||
|
|
a0bba03c2c | ||
|
|
8666e96420 | ||
|
|
fd40e6b297 | ||
|
|
79ccd61af3 |
@@ -93,6 +93,11 @@ public class NaiveNumber implements NumberInterface {
|
||||
return this.compareTo(ZERO);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int ceiling() {
|
||||
return (int) Math.ceil(value);
|
||||
}
|
||||
|
||||
@Override
|
||||
public NumberInterface promoteTo(Class<? extends NumberInterface> toClass) {
|
||||
if (toClass == this.getClass()) return this;
|
||||
|
||||
@@ -79,6 +79,12 @@ public interface NumberInterface {
|
||||
*/
|
||||
int signum();
|
||||
|
||||
/**
|
||||
* Returns the least integer greater than or equal to the number.
|
||||
* @return the least integer >= the number, if int can hold the value.
|
||||
*/
|
||||
int ceiling();
|
||||
|
||||
/**
|
||||
* Promotes this class to another number class.
|
||||
*
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package org.nwapw.abacus.number;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.math.MathContext;
|
||||
import java.math.RoundingMode;
|
||||
|
||||
public class PreciseNumber implements NumberInterface {
|
||||
@@ -49,7 +50,7 @@ public class PreciseNumber implements NumberInterface {
|
||||
|
||||
@Override
|
||||
public NumberInterface multiply(NumberInterface multiplier) {
|
||||
return new PreciseNumber(value.multiply(((PreciseNumber) multiplier).value));
|
||||
return new PreciseNumber(this.value.multiply(((PreciseNumber) multiplier).value));
|
||||
}
|
||||
|
||||
@Override
|
||||
@@ -94,6 +95,11 @@ public class PreciseNumber implements NumberInterface {
|
||||
return value.signum();
|
||||
}
|
||||
|
||||
@Override
|
||||
public int ceiling() {
|
||||
return (int) Math.ceil(value.doubleValue());
|
||||
}
|
||||
|
||||
@Override
|
||||
public NumberInterface negate() {
|
||||
return new PreciseNumber(value.negate());
|
||||
|
||||
@@ -8,6 +8,8 @@ import org.nwapw.abacus.number.NaiveNumber;
|
||||
import org.nwapw.abacus.number.NumberInterface;
|
||||
import org.nwapw.abacus.number.PreciseNumber;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.function.BiFunction;
|
||||
|
||||
/**
|
||||
@@ -16,6 +18,8 @@ import java.util.function.BiFunction;
|
||||
*/
|
||||
public class StandardPlugin extends Plugin {
|
||||
|
||||
private static HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>> factorialLists = new HashMap<Class<? extends NumberInterface>, ArrayList<NumberInterface>>();
|
||||
|
||||
/**
|
||||
* The addition operator, +
|
||||
*/
|
||||
@@ -152,17 +156,40 @@ public class StandardPlugin extends Plugin {
|
||||
|
||||
@Override
|
||||
protected NumberInterface applyInternal(NumberInterface[] params) {
|
||||
boolean takeReciprocal = params[0].signum() == -1;
|
||||
params[0] = FUNCTION_ABS.apply(params[0]);
|
||||
NumberInterface sum = sumSeries(params[0], StandardPlugin::getExpSeriesTerm, getNTermsExp(getMaxError(params[0]), params[0]));
|
||||
if (takeReciprocal) {
|
||||
sum = NaiveNumber.ONE.promoteTo(sum.getClass()).divide(sum);
|
||||
NumberInterface maxError = getMaxError(params[0]);
|
||||
int n = 0;
|
||||
if(params[0].signum() <= 0){
|
||||
NumberInterface currentTerm = NaiveNumber.ONE.promoteTo(params[0].getClass()), sum = currentTerm;
|
||||
while(FUNCTION_ABS.apply(currentTerm).compareTo(maxError) > 0){
|
||||
n++;
|
||||
currentTerm = currentTerm.multiply(params[0]).divide((new NaiveNumber(n)).promoteTo(params[0].getClass()));
|
||||
sum = sum.add(currentTerm);
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
else{
|
||||
//We need n such that x^(n+1) * 3^ceil(x) <= maxError * (n+1)!.
|
||||
//right and left refer to lhs and rhs in the above inequality.
|
||||
NumberInterface sum = NaiveNumber.ONE.promoteTo(params[0].getClass());
|
||||
NumberInterface nextNumerator = params[0];
|
||||
NumberInterface left = params[0].multiply((new NaiveNumber(3)).promoteTo(params[0].getClass()).intPow(params[0].ceiling())), right = maxError;
|
||||
do{
|
||||
sum = sum.add(nextNumerator.divide(factorial(params[0].getClass(), n+1)));
|
||||
n++;
|
||||
nextNumerator = nextNumerator.multiply(params[0]);
|
||||
left = left.multiply(params[0]);
|
||||
NumberInterface nextN = (new NaiveNumber(n+1)).promoteTo(params[0].getClass());
|
||||
right = right.multiply(nextN);
|
||||
//System.out.println(left + ", " + right);
|
||||
}
|
||||
while(left.compareTo(right) > 0);
|
||||
//System.out.println(n+1);
|
||||
return sum;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
};
|
||||
/**
|
||||
* The natural log function, ln(exp(1)) = 1
|
||||
* The natural log function.
|
||||
*/
|
||||
public static final Function FUNCTION_LN = new Function() {
|
||||
@Override
|
||||
@@ -239,7 +266,7 @@ public class StandardPlugin extends Plugin {
|
||||
}
|
||||
};
|
||||
/**
|
||||
* The square root function, sqrt(4) = 2
|
||||
* The square root function.
|
||||
*/
|
||||
public static final Function FUNCTION_SQRT = new Function() {
|
||||
@Override
|
||||
@@ -257,39 +284,6 @@ public class StandardPlugin extends Plugin {
|
||||
super(manager);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the nth term of the Taylor series (centered at 0) of e^x
|
||||
*
|
||||
* @param n the term required (n >= 0).
|
||||
* @param x the real number at which the series is evaluated.
|
||||
* @return the nth term of the series.
|
||||
*/
|
||||
private static NumberInterface getExpSeriesTerm(int n, NumberInterface x) {
|
||||
return x.intPow(n).divide(OP_FACTORIAL.getFunction().apply((new NaiveNumber(n)).promoteTo(x.getClass())));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of terms needed to evaluate the exponential function (at x)
|
||||
* such that the error is at most maxError.
|
||||
*
|
||||
* @param maxError Maximum error permissible (This should probably be positive.)
|
||||
* @param x where the function is evaluated.
|
||||
* @return the number of terms needed to evaluate the exponential function.
|
||||
*/
|
||||
private static int getNTermsExp(NumberInterface maxError, NumberInterface x) {
|
||||
//We need n such that |x^(n+1)| <= (n+1)! * maxError
|
||||
//The variables LHS and RHS refer to the above inequality.
|
||||
int n = 0;
|
||||
x = FUNCTION_ABS.apply(x);
|
||||
NumberInterface LHS = x, RHS = maxError;
|
||||
while (LHS.compareTo(RHS) > 0) {
|
||||
n++;
|
||||
LHS = LHS.multiply(x);
|
||||
RHS = RHS.multiply(new NaiveNumber(n + 1).promoteTo(RHS.getClass()));
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a partial sum of a series whose terms are given by the nthTermFunction, evaluated at x.
|
||||
*
|
||||
@@ -339,4 +333,19 @@ public class StandardPlugin extends Plugin {
|
||||
|
||||
}
|
||||
|
||||
public static NumberInterface factorial(Class<? extends NumberInterface> numberClass, int n){
|
||||
if(!factorialLists.containsKey(numberClass)){
|
||||
factorialLists.put(numberClass, new ArrayList<NumberInterface>());
|
||||
factorialLists.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
|
||||
factorialLists.get(numberClass).add(NaiveNumber.ONE.promoteTo(numberClass));
|
||||
}
|
||||
ArrayList<NumberInterface> list = factorialLists.get(numberClass);
|
||||
if(n >= list.size()){
|
||||
while(list.size() < n + 16){
|
||||
list.add(list.get(list.size()-1).multiply(new NaiveNumber(list.size()).promoteTo(numberClass)));
|
||||
}
|
||||
}
|
||||
return list.get(n);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user