2024-02-11 13:19:46 -08:00
|
|
|
|
open import Lattice
|
2024-03-02 14:54:44 -08:00
|
|
|
|
open import Relation.Binary.PropositionalEquality as Eq
|
|
|
|
|
using (_≡_;refl; sym; trans; cong; subst)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
2024-03-09 13:58:07 -08:00
|
|
|
|
open import Data.List using (List; _∷_; [])
|
2024-02-11 13:19:46 -08:00
|
|
|
|
|
|
|
|
|
module Lattice.FiniteMap {a b : Level} (A : Set a) (B : Set b)
|
|
|
|
|
(_≈₂_ : B → B → Set b)
|
|
|
|
|
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
2024-03-02 14:54:44 -08:00
|
|
|
|
(≡-dec-A : IsDecidable (_≡_ {a} {A}))
|
2024-02-11 13:19:46 -08:00
|
|
|
|
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
|
|
|
|
|
2024-03-09 13:58:07 -08:00
|
|
|
|
open IsLattice lB using () renaming (_≼_ to _≼₂_)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB as Map
|
2024-03-09 13:58:07 -08:00
|
|
|
|
using (Map; ⊔-equal-keys; ⊓-equal-keys; ∈k-dec; m₁≼m₂⇒m₁[k]≼m₂[k])
|
2024-02-11 13:19:46 -08:00
|
|
|
|
renaming
|
|
|
|
|
( _≈_ to _≈ᵐ_
|
|
|
|
|
; _⊔_ to _⊔ᵐ_
|
|
|
|
|
; _⊓_ to _⊓ᵐ_
|
|
|
|
|
; ≈-equiv to ≈ᵐ-equiv
|
|
|
|
|
; ≈-⊔-cong to ≈ᵐ-⊔ᵐ-cong
|
|
|
|
|
; ⊔-assoc to ⊔ᵐ-assoc
|
|
|
|
|
; ⊔-comm to ⊔ᵐ-comm
|
|
|
|
|
; ⊔-idemp to ⊔ᵐ-idemp
|
|
|
|
|
; ≈-⊓-cong to ≈ᵐ-⊓ᵐ-cong
|
|
|
|
|
; ⊓-assoc to ⊓ᵐ-assoc
|
|
|
|
|
; ⊓-comm to ⊓ᵐ-comm
|
|
|
|
|
; ⊓-idemp to ⊓ᵐ-idemp
|
|
|
|
|
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
|
|
|
|
|
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
2024-03-01 23:27:49 -08:00
|
|
|
|
; ≈-dec to ≈ᵐ-dec
|
2024-03-09 13:58:07 -08:00
|
|
|
|
; _[_] to _[_]ᵐ
|
|
|
|
|
; locate to locateᵐ
|
|
|
|
|
; keys to keysᵐ
|
|
|
|
|
; _updating_via_ to _updatingᵐ_via_
|
|
|
|
|
; updating-via-keys-≡ to updatingᵐ-via-keys-≡
|
|
|
|
|
; f'-Monotonic to f'-Monotonicᵐ
|
|
|
|
|
; _≼_ to _≼ᵐ_
|
2024-02-11 13:19:46 -08:00
|
|
|
|
)
|
2024-03-09 13:58:07 -08:00
|
|
|
|
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
|
|
|
|
open import Equivalence
|
2024-03-09 13:58:07 -08:00
|
|
|
|
open import Function using (_∘_)
|
|
|
|
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
|
|
|
|
open import Utils using (Pairwise; _∷_; [])
|
|
|
|
|
open import Data.Empty using (⊥-elim)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
|
|
|
|
|
module _ (ks : List A) where
|
|
|
|
|
FiniteMap : Set (a ⊔ℓ b)
|
|
|
|
|
FiniteMap = Σ Map (λ m → Map.keys m ≡ ks)
|
|
|
|
|
|
|
|
|
|
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
|
|
|
|
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
|
|
|
|
|
2024-03-01 23:27:49 -08:00
|
|
|
|
≈-dec : IsDecidable _≈₂_ → IsDecidable _≈_
|
|
|
|
|
≈-dec ≈₂-dec fm₁ fm₂ = ≈ᵐ-dec ≈₂-dec (proj₁ fm₁) (proj₁ fm₂)
|
|
|
|
|
|
2024-02-11 13:19:46 -08:00
|
|
|
|
_⊔_ : FiniteMap → FiniteMap → FiniteMap
|
2024-03-02 14:54:44 -08:00
|
|
|
|
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) =
|
|
|
|
|
( m₁ ⊔ᵐ m₂
|
|
|
|
|
, trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks))))
|
|
|
|
|
km₁≡ks
|
|
|
|
|
)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
|
|
|
|
|
_⊓_ : FiniteMap → FiniteMap → FiniteMap
|
2024-03-02 14:54:44 -08:00
|
|
|
|
_⊓_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) =
|
|
|
|
|
( m₁ ⊓ᵐ m₂
|
|
|
|
|
, trans (sym (⊓-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks))))
|
|
|
|
|
km₁≡ks
|
|
|
|
|
)
|
2024-02-11 13:19:46 -08:00
|
|
|
|
|
2024-03-09 13:58:07 -08:00
|
|
|
|
_∈k_ : A → FiniteMap → Set a
|
|
|
|
|
_∈k_ k (m₁ , _) = k ∈ˡ (keysᵐ m₁)
|
|
|
|
|
|
|
|
|
|
_updating_via_ : FiniteMap → List A → (A → B) → FiniteMap
|
|
|
|
|
_updating_via_ (m₁ , ksm₁≡ks) ks f =
|
|
|
|
|
( m₁ updatingᵐ ks via f
|
|
|
|
|
, trans (sym (updatingᵐ-via-keys-≡ m₁ ks f)) ksm₁≡ks
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
_[_] : FiniteMap → List A → List B
|
|
|
|
|
_[_] (m₁ , _) ks = m₁ [ ks ]ᵐ
|
|
|
|
|
|
2024-02-11 13:19:46 -08:00
|
|
|
|
≈-equiv : IsEquivalence FiniteMap _≈_
|
|
|
|
|
≈-equiv = record
|
2024-03-02 14:54:44 -08:00
|
|
|
|
{ ≈-refl =
|
|
|
|
|
λ {(m , _)} → IsEquivalence.≈-refl ≈ᵐ-equiv {m}
|
|
|
|
|
; ≈-sym =
|
|
|
|
|
λ {(m₁ , _)} {(m₂ , _)} → IsEquivalence.≈-sym ≈ᵐ-equiv {m₁} {m₂}
|
|
|
|
|
; ≈-trans =
|
|
|
|
|
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} →
|
|
|
|
|
IsEquivalence.≈-trans ≈ᵐ-equiv {m₁} {m₂} {m₃}
|
2024-02-11 13:19:46 -08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
|
|
|
|
|
isUnionSemilattice = record
|
|
|
|
|
{ ≈-equiv = ≈-equiv
|
2024-03-02 14:54:44 -08:00
|
|
|
|
; ≈-⊔-cong =
|
|
|
|
|
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ →
|
|
|
|
|
≈ᵐ-⊔ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
2024-02-11 13:19:46 -08:00
|
|
|
|
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊔ᵐ-assoc m₁ m₂ m₃
|
|
|
|
|
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊔ᵐ-comm m₁ m₂
|
|
|
|
|
; ⊔-idemp = λ (m , _) → ⊔ᵐ-idemp m
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
isIntersectSemilattice : IsSemilattice FiniteMap _≈_ _⊓_
|
|
|
|
|
isIntersectSemilattice = record
|
|
|
|
|
{ ≈-equiv = ≈-equiv
|
2024-03-02 14:54:44 -08:00
|
|
|
|
; ≈-⊔-cong =
|
|
|
|
|
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ →
|
|
|
|
|
≈ᵐ-⊓ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
2024-02-11 13:19:46 -08:00
|
|
|
|
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊓ᵐ-assoc m₁ m₂ m₃
|
|
|
|
|
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊓ᵐ-comm m₁ m₂
|
|
|
|
|
; ⊔-idemp = λ (m , _) → ⊓ᵐ-idemp m
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
isLattice : IsLattice FiniteMap _≈_ _⊔_ _⊓_
|
|
|
|
|
isLattice = record
|
|
|
|
|
{ joinSemilattice = isUnionSemilattice
|
|
|
|
|
; meetSemilattice = isIntersectSemilattice
|
|
|
|
|
; absorb-⊔-⊓ = λ (m₁ , _) (m₂ , _) → absorb-⊔ᵐ-⊓ᵐ m₁ m₂
|
|
|
|
|
; absorb-⊓-⊔ = λ (m₁ , _) (m₂ , _) → absorb-⊓ᵐ-⊔ᵐ m₁ m₂
|
|
|
|
|
}
|
2024-02-11 21:02:43 -08:00
|
|
|
|
|
2024-03-09 13:58:07 -08:00
|
|
|
|
open IsLattice isLattice using (_≼_) public
|
|
|
|
|
|
2024-02-11 21:02:43 -08:00
|
|
|
|
lattice : Lattice FiniteMap
|
|
|
|
|
lattice = record
|
|
|
|
|
{ _≈_ = _≈_
|
|
|
|
|
; _⊔_ = _⊔_
|
|
|
|
|
; _⊓_ = _⊓_
|
|
|
|
|
; isLattice = isLattice
|
|
|
|
|
}
|
2024-03-09 13:58:07 -08:00
|
|
|
|
|
|
|
|
|
module _ {l} {L : Set l}
|
|
|
|
|
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
|
|
|
|
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where
|
|
|
|
|
open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
|
|
|
|
|
|
|
|
|
|
module _ (f : L → FiniteMap) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f)
|
|
|
|
|
(g : A → L → B) (g-Monotonicʳ : ∀ k → Monotonic _≼ˡ_ _≼₂_ (g k))
|
|
|
|
|
(ks : List A) where
|
|
|
|
|
|
|
|
|
|
updater : L → A → B
|
|
|
|
|
updater l k = g k l
|
|
|
|
|
|
|
|
|
|
f' : L → FiniteMap
|
|
|
|
|
f' l = (f l) updating ks via (updater l)
|
|
|
|
|
|
|
|
|
|
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
|
|
|
|
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
|
|
|
|
|
|
|
|
|
all-equal-keys : ∀ (fm₁ fm₂ : FiniteMap) → (Map.keys (proj₁ fm₁) ≡ Map.keys (proj₁ fm₂))
|
|
|
|
|
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)
|
|
|
|
|
|
|
|
|
|
∈k-exclusive : ∀ (fm₁ fm₂ : FiniteMap) {k : A} → ¬ ((k ∈k fm₁) × (¬ k ∈k fm₂))
|
|
|
|
|
∈k-exclusive fm₁ fm₂ {k} (k∈kfm₁ , k∉kfm₂) =
|
|
|
|
|
let
|
|
|
|
|
k∈kfm₂ = subst (λ l → k ∈ˡ l) (all-equal-keys fm₁ fm₂) k∈kfm₁
|
|
|
|
|
in
|
|
|
|
|
k∉kfm₂ k∈kfm₂
|
|
|
|
|
|
|
|
|
|
m₁≼m₂⇒m₁[ks]≼m₂[ks] : ∀ (fm₁ fm₂ : FiniteMap) (ks' : List A) →
|
|
|
|
|
fm₁ ≼ fm₂ → Pairwise _≼₂_ (fm₁ [ ks' ]) (fm₂ [ ks' ])
|
|
|
|
|
m₁≼m₂⇒m₁[ks]≼m₂[ks] _ _ [] _ = []
|
|
|
|
|
m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁@(m₁ , km₁≡ks) fm₂@(m₂ , km₂≡ks) (k ∷ ks'') m₁≼m₂
|
|
|
|
|
with ∈k-dec k (proj₁ m₁) | ∈k-dec k (proj₁ m₂)
|
|
|
|
|
... | yes k∈km₁ | yes k∈km₂ =
|
|
|
|
|
let
|
|
|
|
|
(v₁ , k,v₁∈m₁) = locateᵐ {m = m₁} k∈km₁
|
|
|
|
|
(v₂ , k,v₂∈m₂) = locateᵐ {m = m₂} k∈km₂
|
|
|
|
|
in
|
|
|
|
|
(m₁≼m₂⇒m₁[k]≼m₂[k] m₁ m₂ m₁≼m₂ k,v₁∈m₁ k,v₂∈m₂) ∷ m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ ks'' m₁≼m₂
|
|
|
|
|
... | no k∉km₁ | no k∉km₂ = m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ ks'' m₁≼m₂
|
|
|
|
|
... | yes k∈km₁ | no k∉km₂ = ⊥-elim (∈k-exclusive fm₁ fm₂ (k∈km₁ , k∉km₂))
|
|
|
|
|
... | no k∉km₁ | yes k∈km₂ = ⊥-elim (∈k-exclusive fm₂ fm₁ (k∈km₂ , k∉km₁))
|