agda-spa/Language/Graphs.agda

194 lines
8.2 KiB
Agda
Raw Normal View History

module Language.Graphs where
open import Language.Base
open import Language.Semantics
open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.Nat as Nat using (; suc)
open import Data.Nat.Properties using (+-assoc; +-comm)
open import Data.Product using (_×_; Σ; _,_)
open import Data.Vec using (Vec; []; _∷_; lookup; cast; _++_)
open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-sym; ++-identityʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst)
open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_)
record Graph : Set where
constructor MkGraph
field
size :
Index : Set
Index = Fin size
Edge : Set
Edge = Index × Index
field
nodes : Vec (List BasicStmt) size
edges : List Edge
empty : Graph
empty = record
{ size = 0
; nodes = []
; edges = []
}
↑ˡ-Edge : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
record _⊆_ (g₁ g₂ : Graph) : Set where
constructor Mk-⊆
field
n :
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ Nat.+ n
newNodes : Vec (List BasicStmt) n
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁}
e ListMem.∈ (Graph.edges g₁)
(↑ˡ-Edge e n) ListMem.∈ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
f ↑ˡ n₁ ↑ˡ n₂ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : {s} (f : Fin s) (p : s Nat.+ 0 s)
f Fin.cast p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s Nat.+ 0 s)
e castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : {n m : } (p : n m) (q : m n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m))
castᵉ p e ListMem.∈ es
e ListMem.∈ subst (λ m List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite FinProp.cast-is-id refl idx₁
rewrite FinProp.cast-is-id refl idx₂ = e∈es
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
rewrite cast-is-id refl ns₂
rewrite cast-is-id refl ns₃
with refl nsg₂≡nsg₁++newNodes₁
with refl nsg₃≡nsg₂++newNodes₂ =
record
{ n = n₁ Nat.+ n₂
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
; newNodes = newNodes₁ ++ newNodes₂
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
(subst (λ e' e' ListMem.∈ es₃)
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
}
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n }
}
EdgeRelaxable : Relaxable Graph.Edge
EdgeRelaxable = record
{ relax = λ g₁⊆g₂ (idx₁ , idx₂)
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
)
}
open Relaxable {{...}}
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
{ size = Graph.size g Nat.+ 1
; nodes = Graph.nodes g ++ (bss [])
; edges = List.map (λ e ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
addEdges (MkGraph s ns es) es' =
( record
{ size = s
; nodes = ns
; edges = es' List.++ es
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ListMem.∈ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(ListMemProp.∈-++⁺ʳ es' e∈es))
}
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
buildCfg (s₁ then s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) })
buildCfg (if _ then s₁ else s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx')
addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') })
buildCfg (while _ repeat s) =
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , idx , idx')
addEdges g ((idx , idx') (idx , idx₁) (idx₂ , idx) []) })
map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') })