agda-spa/Analysis/Forward.agda

145 lines
8.4 KiB
Agda
Raw Normal View History

open import Language hiding (_[_])
open import Lattice
module Analysis.Forward
(L : Set) {h}
{_≈ˡ_ : L L Set} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
{{isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_}}
{{≈ˡ-dec : IsDecidable _≈ˡ_}} where
open import Data.Empty using (⊥-elim)
open import Data.Unit using ()
open import Data.String using (String)
open import Data.Product using (_,_)
open import Data.List using (_∷_; []; foldr; foldl)
open import Data.List.Relation.Unary.Any as Any using ()
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
open import Relation.Nullary using (yes; no)
open import Function using (_∘_; flip)
open IsFiniteHeightLattice isFiniteHeightLatticeˡ
using () renaming (isLattice to isLatticeˡ)
module WithProg (prog : Program) where
open import Analysis.Forward.Lattices L prog hiding (≈ᵛ-Decidable) -- to disambiguate instance resolution
open import Analysis.Forward.Evaluation L prog
open Program prog
private module WithStmtEvaluator {{evaluator : StmtEvaluator}} where
open StmtEvaluator evaluator
updateVariablesForState : State StateVariables VariableValues
updateVariablesForState s sv =
foldl (flip (eval s)) (variablesAt s sv) (code s)
updateVariablesForState-Monoʳ : (s : State) Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂ =
let
bss = code s
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
in
foldl-Mono' (IsLattice.joinSemilattice isLatticeᵛ) bss
(flip (eval s)) (eval-Monoʳ s)
vs₁≼vs₂
open StateVariablesFiniteMap.GeneralizedUpdate {{isLatticeᵐ}} (λ x x) (λ a₁≼a₂ a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
using ()
renaming
( f' to updateAll
; f'-Monotonic to updateAll-Mono
; f'-k∈ks-≡ to updateAll-k∈ks-≡
)
public
-- Finally, the whole analysis consists of getting the 'join'
-- of all incoming states, then applying the per-state evaluation
-- function. This is just a composition, and is trivially monotonic.
analyze : StateVariables StateVariables
analyze = updateAll joinAll
analyze-Mono : Monotonic _≼ᵐ_ _≼ᵐ_ analyze
analyze-Mono {sv₁} {sv₂} sv₁≼sv₂ =
updateAll-Mono {joinAll sv₁} {joinAll sv₂}
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
-- The fixed point of the 'analyze' function is our final goal.
open import Fixedpoint ≈ᵐ-Decidable isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ analyze-Mono {m₁} {m₂} m₁≼m₂)
using ()
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
public
variablesAt-updateAll : (s : State) (sv : StateVariables)
variablesAt s (updateAll sv) updateVariablesForState s sv
variablesAt-updateAll s sv
with (vs , s,vs∈usv) locateᵐ {s} {updateAll sv} (states-in-Map s (updateAll sv)) =
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
module WithValidInterpretation {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
{{validEvaluator : ValidStmtEvaluator evaluator latticeInterpretationˡ}} (dummy : ) where
open ValidStmtEvaluator validEvaluator
eval-fold-valid : {s bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip (eval s)) vs bss ⟧ᵛ ρ₂
eval-fold-valid {_} [] ⟦vs⟧ρ = ⟦vs⟧ρ
eval-fold-valid {s} {bs bss'} {vs} {ρ₁} {ρ₂} (ρ₁,bs⇒ρ ρ,bss'⇒ρ₂) ⟦vs⟧ρ =
eval-fold-valid
{bss = bss'} {eval s bs vs} ρ,bss'⇒ρ₂
(valid ρ₁,bs⇒ρ ⟦vs⟧ρ)
updateVariablesForState-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ updateVariablesForState s sv ⟧ᵛ ρ₂
updateVariablesForState-matches = eval-fold-valid
updateAll-matches : {s sv ρ₁ ρ₂} ρ₁ , (code s) ⇒ᵇˢ ρ₂ variablesAt s sv ⟧ᵛ ρ₁ variablesAt s (updateAll sv) ⟧ᵛ ρ₂
updateAll-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
rewrite variablesAt-updateAll s sv =
updateVariablesForState-matches {s} {sv} ρ₁,bss⇒ρ ⟦vs⟧ρ
stepTrace : {s₁ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ ρ₁ , (code s₁) ⇒ᵇˢ ρ₂ variablesAt s₁ result ⟧ᵛ ρ₂
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ =
let
-- I'd use rewrite, but Agda gets a memory overflow (?!).
⟦joinAll-result⟧ρ =
subst (λ vs vs ⟧ᵛ ρ₁)
(sym (variablesAt-joinAll s₁ result))
⟦joinForKey-s₁⟧ρ
⟦analyze-result⟧ρ =
updateAll-matches {sv = joinAll result}
ρ₁,bss⇒ρ ⟦joinAll-result⟧ρ
analyze-result≈result =
≈ᵐ-sym {result} {updateAll (joinAll result)}
result≈analyze-result
analyze-s₁≈s₁ =
variablesAt-≈ s₁ (updateAll (joinAll result))
result (analyze-result≈result)
in
⟦⟧ᵛ-respects-≈ᵛ {variablesAt s₁ (updateAll (joinAll result))} {variablesAt s₁ result} (analyze-s₁≈s₁) ρ₂ ⟦analyze-result⟧ρ
walkTrace : {s₁ s₂ ρ₁ ρ₂} joinForKey s₁ result ⟧ᵛ ρ₁ Trace {graph} s₁ s₂ ρ₁ ρ₂ variablesAt s₂ result ⟧ᵛ ρ₂
walkTrace {s₁} {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ (Trace-single ρ₁,bss⇒ρ) =
stepTrace {s₁} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ
walkTrace {s₁} {s₂} {ρ₁} {ρ₂} ⟦joinForKey-s₁⟧ρ (Trace-edge {ρ₂ = ρ} {idx₂ = s} ρ₁,bss⇒ρ s₁→s₂ tr) =
let
⟦result-s₁⟧ρ =
stepTrace {s₁} {ρ₁} {ρ} ⟦joinForKey-s₁⟧ρ ρ₁,bss⇒ρ
s₁∈incomingStates =
[]-∈ result (edge⇒incoming s₁→s₂)
(variablesAt-∈ s₁ result)
⟦joinForKey-s⟧ρ =
⟦⟧ᵛ-foldr ⟦result-s₁⟧ρ s₁∈incomingStates
in
walkTrace ⟦joinForKey-s⟧ρ tr
joinForKey-initialState-⊥ᵛ : joinForKey initialState result ⊥ᵛ
joinForKey-initialState-⊥ᵛ = cong (λ ins foldr _⊔ᵛ_ ⊥ᵛ (result [ ins ])) initialState-pred-∅
⟦joinAll-initialState⟧ᵛ∅ : joinForKey initialState result ⟧ᵛ []
⟦joinAll-initialState⟧ᵛ∅ = subst (λ vs vs ⟧ᵛ []) (sym joinForKey-initialState-⊥ᵛ) ⟦⊥ᵛ⟧ᵛ∅
analyze-correct : {ρ : Env} [] , rootStmt ⇒ˢ ρ variablesAt finalState result ⟧ᵛ ρ
analyze-correct {ρ} ∅,s⇒ρ = walkTrace {initialState} {finalState} {[]} {ρ} ⟦joinAll-initialState⟧ᵛ∅ (trace ∅,s⇒ρ)
open WithStmtEvaluator using (result; analyze; result≈analyze-result) public
open WithStmtEvaluator.WithValidInterpretation using (analyze-correct) public