146 lines
6.8 KiB
Agda
146 lines
6.8 KiB
Agda
|
module Language.Base where
|
|||
|
|
|||
|
open import Data.List as List using (List)
|
|||
|
open import Data.Nat using (ℕ; suc)
|
|||
|
open import Data.Product using (Σ; _,_; proj₁)
|
|||
|
open import Data.String as String using (String)
|
|||
|
open import Data.Vec using (Vec; foldr; lookup)
|
|||
|
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
|
|||
|
|
|||
|
open import Lattice
|
|||
|
|
|||
|
data Expr : Set where
|
|||
|
_+_ : Expr → Expr → Expr
|
|||
|
_-_ : Expr → Expr → Expr
|
|||
|
`_ : String → Expr
|
|||
|
#_ : ℕ → Expr
|
|||
|
|
|||
|
data BasicStmt : Set where
|
|||
|
_←_ : String → Expr → BasicStmt
|
|||
|
noop : BasicStmt
|
|||
|
|
|||
|
infixr 2 _then_
|
|||
|
infix 3 if_then_else_
|
|||
|
infix 3 while_repeat_
|
|||
|
data Stmt : Set where
|
|||
|
⟨_⟩ : BasicStmt → Stmt
|
|||
|
_then_ : Stmt → Stmt → Stmt
|
|||
|
if_then_else_ : Expr → Stmt → Stmt → Stmt
|
|||
|
while_repeat_ : Expr → Stmt → Stmt
|
|||
|
|
|||
|
data _∈ᵉ_ : String → Expr → Set where
|
|||
|
in⁺₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ + e₂)
|
|||
|
in⁺₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ + e₂)
|
|||
|
in⁻₁ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₁ → k ∈ᵉ (e₁ - e₂)
|
|||
|
in⁻₂ : ∀ {e₁ e₂ : Expr} {k : String} → k ∈ᵉ e₂ → k ∈ᵉ (e₁ - e₂)
|
|||
|
here : ∀ {k : String} → k ∈ᵉ (` k)
|
|||
|
|
|||
|
data _∈ᵇ_ : String → BasicStmt → Set where
|
|||
|
in←₁ : ∀ {k : String} {e : Expr} → k ∈ᵇ (k ← e)
|
|||
|
in←₂ : ∀ {k k' : String} {e : Expr} → k ∈ᵉ e → k ∈ᵇ (k' ← e)
|
|||
|
|
|||
|
open import Lattice.MapSet (String._≟_)
|
|||
|
renaming
|
|||
|
( MapSet to StringSet
|
|||
|
; insert to insertˢ
|
|||
|
; empty to emptyˢ
|
|||
|
; singleton to singletonˢ
|
|||
|
; _⊔_ to _⊔ˢ_
|
|||
|
; `_ to `ˢ_
|
|||
|
; _∈_ to _∈ˢ_
|
|||
|
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
|
|||
|
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
|
|||
|
)
|
|||
|
|
|||
|
Expr-vars : Expr → StringSet
|
|||
|
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
|
|||
|
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
|
|||
|
Expr-vars (` s) = singletonˢ s
|
|||
|
Expr-vars (# _) = emptyˢ
|
|||
|
|
|||
|
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
|
|||
|
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
|
|||
|
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
|||
|
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
|||
|
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
|||
|
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
|||
|
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
|
|||
|
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) ∪ (`ˢ (Expr-vars e₂))) k∈vs
|
|||
|
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
|||
|
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
|
|||
|
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
|
|||
|
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
|
|||
|
|
|||
|
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
|
|||
|
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
|
|||
|
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
|||
|
-- {m₂ = Expr-vars e₂}
|
|||
|
-- (∈⇒∈-Expr-vars k∈e₁)
|
|||
|
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
|
|||
|
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
|||
|
-- {m₂ = Expr-vars e₂}
|
|||
|
-- (∈⇒∈-Expr-vars k∈e₂)
|
|||
|
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
|
|||
|
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
|
|||
|
-- {m₂ = Expr-vars e₂}
|
|||
|
-- (∈⇒∈-Expr-vars k∈e₁)
|
|||
|
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
|
|||
|
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
|
|||
|
-- {m₂ = Expr-vars e₂}
|
|||
|
-- (∈⇒∈-Expr-vars k∈e₂)
|
|||
|
-- ∈⇒∈-Expr-vars here = RelAny.here refl
|
|||
|
|
|||
|
BasicStmt-vars : BasicStmt → StringSet
|
|||
|
BasicStmt-vars (x ← e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
|
|||
|
BasicStmt-vars noop = emptyˢ
|
|||
|
|
|||
|
Stmt-vars : Stmt → StringSet
|
|||
|
Stmt-vars ⟨ bs ⟩ = BasicStmt-vars bs
|
|||
|
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
|
|||
|
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
|
|||
|
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
|
|||
|
|
|||
|
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
|
|||
|
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
|
|||
|
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) ∪ (`ˢ (Expr-vars e))) k∈vs
|
|||
|
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
|
|||
|
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
|
|||
|
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
|
|||
|
|
|||
|
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
|
|||
|
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
|
|||
|
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
|
|||
|
-- {m₂ = Expr-vars e}
|
|||
|
-- (RelAny.here refl)
|
|||
|
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
|
|||
|
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
|
|||
|
-- {m₂ = Expr-vars e}
|
|||
|
-- (∈⇒∈-Expr-vars k∈e)
|
|||
|
|
|||
|
Stmts-vars : ∀ {n : ℕ} → Vec Stmt n → StringSet
|
|||
|
Stmts-vars = foldr (λ n → StringSet)
|
|||
|
(λ {k} stmt acc → (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
|
|||
|
|
|||
|
-- ∈-Stmts-vars⇒∈ : ∀ {n : ℕ} {k : String} (ss : Vec Stmt n) →
|
|||
|
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
|
|||
|
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
|
|||
|
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) ∪ (`ˢ (Stmts-vars ss'))) k∈vss
|
|||
|
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
|||
|
-- ... | in₂ _ (single k,tt∈vss') =
|
|||
|
-- let
|
|||
|
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
|
|||
|
-- in
|
|||
|
-- (suc f' , k∈s')
|
|||
|
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
|
|||
|
|
|||
|
-- ∈⇒∈-Stmts-vars : ∀ {n : ℕ} {k : String} {ss : Vec Stmt n} {f : Fin n} →
|
|||
|
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
|
|||
|
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
|
|||
|
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
|
|||
|
-- {m₂ = Stmts-vars ss'}
|
|||
|
-- (∈⇒∈-Stmt-vars k∈s)
|
|||
|
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
|
|||
|
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
|
|||
|
-- {m₂ = Stmts-vars ss'}
|
|||
|
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')
|