agda-spa/Language/Base.agda

146 lines
6.8 KiB
Agda
Raw Normal View History

module Language.Base where
open import Data.List as List using (List)
open import Data.Nat using (; suc)
open import Data.Product using (Σ; _,_; proj₁)
open import Data.String as String using (String)
open import Data.Vec using (Vec; foldr; lookup)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Lattice
data Expr : Set where
_+_ : Expr Expr Expr
_-_ : Expr Expr Expr
`_ : String Expr
#_ : Expr
data BasicStmt : Set where
_←_ : String Expr BasicStmt
noop : BasicStmt
infixr 2 _then_
infix 3 if_then_else_
infix 3 while_repeat_
data Stmt : Set where
⟨_⟩ : BasicStmt Stmt
_then_ : Stmt Stmt Stmt
if_then_else_ : Expr Stmt Stmt Stmt
while_repeat_ : Expr Stmt Stmt
data _∈ᵉ_ : String Expr Set where
in⁺₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ + e₂)
in⁺₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ + e₂)
in⁻₁ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₁ k ∈ᵉ (e₁ - e₂)
in⁻₂ : {e₁ e₂ : Expr} {k : String} k ∈ᵉ e₂ k ∈ᵉ (e₁ - e₂)
here : {k : String} k ∈ᵉ (` k)
data _∈ᵇ_ : String BasicStmt Set where
in←₁ : {k : String} {e : Expr} k ∈ᵇ (k e)
in←₂ : {k k' : String} {e : Expr} k ∈ᵉ e k ∈ᵇ (k' e)
open import Lattice.MapSet (record { R-dec = String._≟_ })
renaming
( MapSet to StringSet
; insert to insertˢ
; empty to emptyˢ
; singleton to singletonˢ
; _⊔_ to _⊔ˢ_
; `_ to `ˢ_
; _∈_ to _∈ˢ_
; ⊔-preserves-∈k₁ to ⊔ˢ-preserves-∈k₁
; ⊔-preserves-∈k₂ to ⊔ˢ-preserves-∈k₂
)
Expr-vars : Expr StringSet
Expr-vars (l + r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (l - r) = Expr-vars l ⊔ˢ Expr-vars r
Expr-vars (` s) = singletonˢ s
Expr-vars (# _) = emptyˢ
-- ∈-Expr-vars⇒∈ : ∀ {k : String} (e : Expr) → k ∈ˢ (Expr-vars e) → k ∈ᵉ e
-- ∈-Expr-vars⇒∈ {k} (e₁ + e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁺₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁺₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (e₁ - e₂) k∈vs
-- with Expr-Provenance k ((`ˢ (Expr-vars e₁)) (`ˢ (Expr-vars e₂))) k∈vs
-- ... | in₁ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ... | in₂ _ (single k,tt∈vs₂) = (in⁻₂ (∈-Expr-vars⇒∈ e₂ (forget k,tt∈vs₂)))
-- ... | bothᵘ (single k,tt∈vs₁) _ = (in⁻₁ (∈-Expr-vars⇒∈ e₁ (forget k,tt∈vs₁)))
-- ∈-Expr-vars⇒∈ {k} (` k) (RelAny.here refl) = here
-- ∈⇒∈-Expr-vars : ∀ {k : String} {e : Expr} → k ∈ᵉ e → k ∈ˢ (Expr-vars e)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ + e₂} (in⁺₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₁ k∈e₁) =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₁)
-- ∈⇒∈-Expr-vars {k} {e₁ - e₂} (in⁻₂ k∈e₂) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Expr-vars e₁}
-- {m₂ = Expr-vars e₂}
-- (∈⇒∈-Expr-vars k∈e₂)
-- ∈⇒∈-Expr-vars here = RelAny.here refl
BasicStmt-vars : BasicStmt StringSet
BasicStmt-vars (x e) = (singletonˢ x) ⊔ˢ (Expr-vars e)
BasicStmt-vars noop = emptyˢ
Stmt-vars : Stmt StringSet
Stmt-vars bs = BasicStmt-vars bs
Stmt-vars (s₁ then s₂) = (Stmt-vars s₁) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (if e then s₁ else s₂) = ((Expr-vars e) ⊔ˢ (Stmt-vars s₁)) ⊔ˢ (Stmt-vars s₂)
Stmt-vars (while e repeat s) = (Expr-vars e) ⊔ˢ (Stmt-vars s)
-- ∈-Stmt-vars⇒∈ : ∀ {k : String} (s : Stmt) → k ∈ˢ (Stmt-vars s) → k ∈ᵇ s
-- ∈-Stmt-vars⇒∈ {k} (k' ← e) k∈vs
-- with Expr-Provenance k ((`ˢ (singletonˢ k')) (`ˢ (Expr-vars e))) k∈vs
-- ... | in₁ (single (RelAny.here refl)) _ = in←₁
-- ... | in₂ _ (single k,tt∈vs') = in←₂ (∈-Expr-vars⇒∈ e (forget k,tt∈vs'))
-- ... | bothᵘ (single (RelAny.here refl)) _ = in←₁
-- ∈⇒∈-Stmt-vars : ∀ {k : String} {s : Stmt} → k ∈ᵇ s → k ∈ˢ (Stmt-vars s)
-- ∈⇒∈-Stmt-vars {k} {k ← e} in←₁ =
-- ⊔ˢ-preserves-∈k₁ {m₁ = singletonˢ k}
-- {m₂ = Expr-vars e}
-- (RelAny.here refl)
-- ∈⇒∈-Stmt-vars {k} {k' ← e} (in←₂ k∈e) =
-- ⊔ˢ-preserves-∈k₂ {m₁ = singletonˢ k'}
-- {m₂ = Expr-vars e}
-- (∈⇒∈-Expr-vars k∈e)
Stmts-vars : {n : } Vec Stmt n StringSet
Stmts-vars = foldr (λ n StringSet)
(λ {k} stmt acc (Stmt-vars stmt) ⊔ˢ acc) emptyˢ
-- ∈-Stmts-vars⇒∈ : ∀ {n : } {k : String} (ss : Vec Stmt n) →
-- k ∈ˢ (Stmts-vars ss) → Σ (Fin n) (λ f → k ∈ᵇ lookup ss f)
-- ∈-Stmts-vars⇒∈ {suc n'} {k} (s ∷ ss') k∈vss
-- with Expr-Provenance k ((`ˢ (Stmt-vars s)) (`ˢ (Stmts-vars ss'))) k∈vss
-- ... | in₁ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ... | in₂ _ (single k,tt∈vss') =
-- let
-- (f' , k∈s') = ∈-Stmts-vars⇒∈ ss' (forget k,tt∈vss')
-- in
-- (suc f' , k∈s')
-- ... | bothᵘ (single k,tt∈vs) _ = (zero , ∈-Stmt-vars⇒∈ s (forget k,tt∈vs))
-- ∈⇒∈-Stmts-vars : ∀ {n : } {k : String} {ss : Vec Stmt n} {f : Fin n} →
-- k ∈ᵇ lookup ss f → k ∈ˢ (Stmts-vars ss)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {zero} k∈s =
-- ⊔ˢ-preserves-∈k₁ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmt-vars k∈s)
-- ∈⇒∈-Stmts-vars {suc n} {k} {s ∷ ss'} {suc f'} k∈ss' =
-- ⊔ˢ-preserves-∈k₂ {m₁ = Stmt-vars s}
-- {m₂ = Stmts-vars ss'}
-- (∈⇒∈-Stmts-vars {n} {k} {ss'} {f'} k∈ss')