agda-spa/Equivalence.agda

22 lines
670 B
Agda
Raw Normal View History

module Equivalence where
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
module _ {a} (A : Set a) (_≈_ : A A Set a) where
IsReflexive : Set a
IsReflexive = {a : A} a a
IsSymmetric : Set a
IsSymmetric = {a b : A} a b b a
IsTransitive : Set a
IsTransitive = {a b c : A} a b b c a c
record IsEquivalence : Set a where
field
≈-refl : IsReflexive
≈-sym : IsSymmetric
≈-trans : IsTransitive