agda-spa/Lattice/MapSet.agda

46 lines
1.5 KiB
Agda
Raw Normal View History

open import Lattice
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔_)
open import Data.Unit using ()
module Lattice.MapSet {a : Level} (A : Set a) {{≡-Decidable-A : IsDecidable (_≡_ {a} {A})}} (dummy : ) where
open import Data.List using (List; map)
open import Data.Product using (_,_; proj₁)
open import Function using (_∘_)
open import Lattice.Unit using (; tt) renaming (_≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_; isLattice to -isLattice)
import Lattice.Map
private module UnitMap = Lattice.Map A dummy
open UnitMap
using (Map; Expr; ⟦_⟧)
renaming
( Expr-Provenance to Expr-Provenanceᵐ
)
open UnitMap
using
( _⊆_; _≈_; ≈-equiv; _⊔_; _⊓_; __ ; _∩_ ; `_; empty; forget
; isUnionSemilattice; isIntersectSemilattice; isLattice; lattice
; Provenance
; ⊔-preserves-∈k₁
; ⊔-preserves-∈k₂
)
renaming (_∈k_ to _∈_) public
open Provenance public
MapSet : Set a
MapSet = Map
to-List : MapSet List A
to-List = map proj₁ proj₁
insert : A MapSet MapSet
insert k = UnitMap.insert k tt
singleton : A MapSet
singleton k = UnitMap.insert k tt empty
Expr-Provenance : (k : A) (e : Expr) k e Provenance k tt e
Expr-Provenance k e k∈e = let (tt , (prov , _)) = Expr-Provenanceᵐ k e k∈e in prov