Format AboveBelow a bit better (round two)
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
ec2b1ec3ba
commit
03cdc65a7b
|
@ -11,11 +11,13 @@ open import Data.Empty using (⊥-elim)
|
||||||
open import Data.Product using (_,_)
|
open import Data.Product using (_,_)
|
||||||
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
||||||
open import Function using (_∘_)
|
open import Function using (_∘_)
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst; refl)
|
open import Relation.Binary.PropositionalEquality as Eq
|
||||||
|
using (_≡_; sym; subst; refl)
|
||||||
|
|
||||||
import Chain
|
import Chain
|
||||||
|
|
||||||
open IsEquivalence ≈₁-equiv using () renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
open IsEquivalence ≈₁-equiv using ()
|
||||||
|
renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||||
|
|
||||||
data AboveBelow : Set a where
|
data AboveBelow : Set a where
|
||||||
⊥ : AboveBelow
|
⊥ : AboveBelow
|
||||||
|
@ -104,7 +106,8 @@ module Plain where
|
||||||
... | yes x≈₁y = ⊥-elim (x̷≈₁y x≈₁y)
|
... | yes x≈₁y = ⊥-elim (x̷≈₁y x≈₁y)
|
||||||
... | no x̷≈₁y = refl
|
... | no x̷≈₁y = refl
|
||||||
|
|
||||||
≈-⊔-cong : ∀ {ab₁ ab₂ ab₃ ab₄} → ab₁ ≈ ab₂ → ab₃ ≈ ab₄ → (ab₁ ⊔ ab₃) ≈ (ab₂ ⊔ ab₄)
|
≈-⊔-cong : ∀ {ab₁ ab₂ ab₃ ab₄} → ab₁ ≈ ab₂ → ab₃ ≈ ab₄ →
|
||||||
|
(ab₁ ⊔ ab₃) ≈ (ab₂ ⊔ ab₄)
|
||||||
≈-⊔-cong ≈-⊤-⊤ ≈-⊤-⊤ = ≈-⊤-⊤
|
≈-⊔-cong ≈-⊤-⊤ ≈-⊤-⊤ = ≈-⊤-⊤
|
||||||
≈-⊔-cong ≈-⊤-⊤ ≈-⊥-⊥ = ≈-⊤-⊤
|
≈-⊔-cong ≈-⊤-⊤ ≈-⊥-⊥ = ≈-⊤-⊤
|
||||||
≈-⊔-cong ≈-⊥-⊥ ≈-⊤-⊤ = ≈-⊤-⊤
|
≈-⊔-cong ≈-⊥-⊥ ≈-⊤-⊤ = ≈-⊤-⊤
|
||||||
|
@ -120,7 +123,8 @@ module Plain where
|
||||||
... | no a₁̷≈a₃ | yes a₂≈a₄ = ⊥-elim (a₁̷≈a₃ (≈₁-trans a₁≈a₂ (≈₁-trans a₂≈a₄ (≈₁-sym a₃≈a₄))))
|
... | no a₁̷≈a₃ | yes a₂≈a₄ = ⊥-elim (a₁̷≈a₃ (≈₁-trans a₁≈a₂ (≈₁-trans a₂≈a₄ (≈₁-sym a₃≈a₄))))
|
||||||
... | no _ | no _ = ≈-⊤-⊤
|
... | no _ | no _ = ≈-⊤-⊤
|
||||||
|
|
||||||
⊔-assoc : ∀ (ab₁ ab₂ ab₃ : AboveBelow) → ((ab₁ ⊔ ab₂) ⊔ ab₃) ≈ (ab₁ ⊔ (ab₂ ⊔ ab₃))
|
⊔-assoc : ∀ (ab₁ ab₂ ab₃ : AboveBelow) →
|
||||||
|
((ab₁ ⊔ ab₂) ⊔ ab₃) ≈ (ab₁ ⊔ (ab₂ ⊔ ab₃))
|
||||||
⊔-assoc ⊤ ab₂ ab₃ = ≈-⊤-⊤
|
⊔-assoc ⊤ ab₂ ab₃ = ≈-⊤-⊤
|
||||||
⊔-assoc ⊥ ab₂ ab₃ = ≈-refl
|
⊔-assoc ⊥ ab₂ ab₃ = ≈-refl
|
||||||
⊔-assoc [ x₁ ] ⊤ ab₃ = ≈-⊤-⊤
|
⊔-assoc [ x₁ ] ⊤ ab₃ = ≈-⊤-⊤
|
||||||
|
|
Loading…
Reference in New Issue
Block a user