Use instances to simplify printing code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
56da61b339
commit
040c13caba
|
@ -13,6 +13,7 @@ open import Function using (_∘_)
|
||||||
open import Language
|
open import Language
|
||||||
open import Lattice
|
open import Lattice
|
||||||
open import Utils using (Pairwise)
|
open import Utils using (Pairwise)
|
||||||
|
open import Showable using (Showable; show)
|
||||||
import Lattice.FiniteValueMap
|
import Lattice.FiniteValueMap
|
||||||
|
|
||||||
data Sign : Set where
|
data Sign : Set where
|
||||||
|
@ -20,6 +21,16 @@ data Sign : Set where
|
||||||
- : Sign
|
- : Sign
|
||||||
0ˢ : Sign
|
0ˢ : Sign
|
||||||
|
|
||||||
|
instance
|
||||||
|
showable : Showable Sign
|
||||||
|
showable = record
|
||||||
|
{ show = (λ
|
||||||
|
{ + → "+"
|
||||||
|
; - → "-"
|
||||||
|
; 0ˢ → "0"
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
-- g for siGn; s is used for strings and i is not very descriptive.
|
-- g for siGn; s is used for strings and i is not very descriptive.
|
||||||
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
||||||
_≟ᵍ_ + + = yes refl
|
_≟ᵍ_ + + = yes refl
|
||||||
|
@ -301,20 +312,7 @@ module WithProg (prog : Program) where
|
||||||
open import Data.String using (_++_)
|
open import Data.String using (_++_)
|
||||||
open import Data.List using () renaming (length to lengthˡ)
|
open import Data.List using () renaming (length to lengthˡ)
|
||||||
|
|
||||||
showAboveBelow : AB.AboveBelow → String
|
output = show signs
|
||||||
showAboveBelow AB.⊤ = "⊤"
|
|
||||||
showAboveBelow AB.⊥ = "⊥"
|
|
||||||
showAboveBelow (AB.[_] +) = "+"
|
|
||||||
showAboveBelow (AB.[_] -) = "-"
|
|
||||||
showAboveBelow (AB.[_] 0ˢ) = "0"
|
|
||||||
|
|
||||||
showVarSigns : VariableSigns → String
|
|
||||||
showVarSigns ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest → x ++ " ↦ " ++ showAboveBelow y ++ ", " ++ rest) "" kvs ++ "}"
|
|
||||||
|
|
||||||
showStateVars : StateVariables → String
|
|
||||||
showStateVars ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest → (showFin x) ++ " ↦ " ++ showVarSigns y ++ ", " ++ rest) "" kvs ++ "}"
|
|
||||||
|
|
||||||
output = showStateVars signs
|
|
||||||
|
|
||||||
|
|
||||||
-- Debugging code: construct and run a program.
|
-- Debugging code: construct and run a program.
|
||||||
|
|
|
@ -11,6 +11,7 @@ open import Data.Empty using (⊥-elim)
|
||||||
open import Data.Product using (_,_)
|
open import Data.Product using (_,_)
|
||||||
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
||||||
open import Function using (_∘_)
|
open import Function using (_∘_)
|
||||||
|
open import Showable using (Showable; show)
|
||||||
open import Relation.Binary.PropositionalEquality as Eq
|
open import Relation.Binary.PropositionalEquality as Eq
|
||||||
using (_≡_; sym; subst; refl)
|
using (_≡_; sym; subst; refl)
|
||||||
|
|
||||||
|
@ -24,6 +25,16 @@ data AboveBelow : Set a where
|
||||||
⊤ : AboveBelow
|
⊤ : AboveBelow
|
||||||
[_] : A → AboveBelow
|
[_] : A → AboveBelow
|
||||||
|
|
||||||
|
instance
|
||||||
|
showable : {{ showableA : Showable A }} → Showable AboveBelow
|
||||||
|
showable = record
|
||||||
|
{ show = (λ
|
||||||
|
{ ⊥ → "⊥"
|
||||||
|
; ⊤ → "⊤"
|
||||||
|
; [ a ] → show a
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
data _≈_ : AboveBelow → AboveBelow → Set a where
|
data _≈_ : AboveBelow → AboveBelow → Set a where
|
||||||
≈-⊥-⊥ : ⊥ ≈ ⊥
|
≈-⊥-⊥ : ⊥ ≈ ⊥
|
||||||
≈-⊤-⊤ : ⊤ ≈ ⊤
|
≈-⊤-⊤ : ⊤ ≈ ⊤
|
||||||
|
|
|
@ -45,11 +45,17 @@ open import Function using (_∘_)
|
||||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
open import Utils using (Pairwise; _∷_; [])
|
open import Utils using (Pairwise; _∷_; [])
|
||||||
open import Data.Empty using (⊥-elim)
|
open import Data.Empty using (⊥-elim)
|
||||||
|
open import Showable using (Showable; show)
|
||||||
|
|
||||||
module WithKeys (ks : List A) where
|
module WithKeys (ks : List A) where
|
||||||
FiniteMap : Set (a ⊔ℓ b)
|
FiniteMap : Set (a ⊔ℓ b)
|
||||||
FiniteMap = Σ Map (λ m → Map.keys m ≡ ks)
|
FiniteMap = Σ Map (λ m → Map.keys m ≡ ks)
|
||||||
|
|
||||||
|
instance
|
||||||
|
showable : {{ showableA : Showable A }} {{ showableB : Showable B }} →
|
||||||
|
Showable FiniteMap
|
||||||
|
showable = record { show = λ (m₁ , _) → show m₁ }
|
||||||
|
|
||||||
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
||||||
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
||||||
|
|
||||||
|
|
|
@ -13,13 +13,15 @@ open import Data.List.Membership.Propositional as MemProp using () renaming (_
|
||||||
|
|
||||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
open import Data.Nat using (ℕ)
|
open import Data.Nat using (ℕ)
|
||||||
open import Data.List using (List; map; []; _∷_; _++_)
|
open import Data.List using (List; map; []; _∷_; _++_) renaming (foldr to foldrˡ)
|
||||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
open import Equivalence
|
open import Equivalence
|
||||||
open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
||||||
|
open import Data.String using () renaming (_++_ to _++ˢ_)
|
||||||
|
open import Showable using (Showable; show)
|
||||||
|
|
||||||
open IsLattice lB using () renaming
|
open IsLattice lB using () renaming
|
||||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||||
|
@ -478,6 +480,14 @@ private module ImplInsert (f : B → B → B) where
|
||||||
Map : Set (a ⊔ℓ b)
|
Map : Set (a ⊔ℓ b)
|
||||||
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
||||||
|
|
||||||
|
instance
|
||||||
|
showable : {{ showableA : Showable A }} {{ showableB : Showable B }} →
|
||||||
|
Showable Map
|
||||||
|
showable = record
|
||||||
|
{ show = λ (kvs , _) →
|
||||||
|
"{" ++ˢ foldrˡ (λ (x , y) rest → show x ++ˢ " ↦ " ++ˢ show y ++ˢ ", " ++ˢ rest) "" kvs ++ˢ "}"
|
||||||
|
}
|
||||||
|
|
||||||
empty : Map
|
empty : Map
|
||||||
empty = ([] , Utils.empty)
|
empty = ([] , Utils.empty)
|
||||||
|
|
||||||
|
|
38
Showable.agda
Normal file
38
Showable.agda
Normal file
|
@ -0,0 +1,38 @@
|
||||||
|
module Showable where
|
||||||
|
|
||||||
|
open import Data.String using (String; _++_)
|
||||||
|
open import Data.Nat using (ℕ)
|
||||||
|
open import Data.Nat.Show using () renaming (show to showNat)
|
||||||
|
open import Data.Fin using (Fin)
|
||||||
|
open import Data.Fin.Show using () renaming (show to showFin)
|
||||||
|
open import Data.Product using (_×_; _,_)
|
||||||
|
open import Data.Unit using (⊤; tt)
|
||||||
|
|
||||||
|
record Showable {a} (A : Set a) : Set a where
|
||||||
|
field
|
||||||
|
show : A → String
|
||||||
|
|
||||||
|
open Showable {{ ... }} public
|
||||||
|
|
||||||
|
instance
|
||||||
|
showableString : Showable String
|
||||||
|
showableString = record { show = λ s → "\"" ++ s ++ "\"" }
|
||||||
|
|
||||||
|
showableNat : Showable ℕ
|
||||||
|
showableNat = record { show = showNat }
|
||||||
|
|
||||||
|
showableFin : ∀ {n : ℕ} → Showable (Fin n)
|
||||||
|
showableFin = record { show = showFin }
|
||||||
|
|
||||||
|
showableProd : ∀ {a b} {A : Set a} {B : Set b}
|
||||||
|
{{ showableA : Showable A }} {{ showableB : Showable B }} →
|
||||||
|
Showable (A × B)
|
||||||
|
showableProd {{ showableA }} {{ showableB }} = record
|
||||||
|
{ show = λ (a , b) →
|
||||||
|
"(" ++ show a ++
|
||||||
|
", " ++ show b ++
|
||||||
|
")"
|
||||||
|
}
|
||||||
|
|
||||||
|
showableUnit : Showable ⊤
|
||||||
|
showableUnit = record { show = λ tt → "()" }
|
Loading…
Reference in New Issue
Block a user