Expose decidability from Map modules
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
65d1590358
commit
0774946211
|
@ -19,4 +19,8 @@ module _ (fhB : FiniteHeightLattice B) where
|
||||||
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) where
|
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) where
|
||||||
import Lattice.FiniteValueMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂ as FVM
|
import Lattice.FiniteValueMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂ as FVM
|
||||||
|
|
||||||
|
FiniteHeightType = FVM.FiniteMap
|
||||||
|
|
||||||
|
≈-dec = FVM.≈-dec ks ≈₂-dec
|
||||||
|
|
||||||
finiteHeightLattice = FVM.IterProdIsomorphism.finiteHeightLattice uks ≈₂-dec height₂ fixedHeight₂
|
finiteHeightLattice = FVM.IterProdIsomorphism.finiteHeightLattice uks ≈₂-dec height₂ fixedHeight₂
|
||||||
|
|
|
@ -27,6 +27,7 @@ open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB as Map
|
||||||
; ⊓-idemp to ⊓ᵐ-idemp
|
; ⊓-idemp to ⊓ᵐ-idemp
|
||||||
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
|
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
|
||||||
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
||||||
|
; ≈-dec to ≈ᵐ-dec
|
||||||
)
|
)
|
||||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||||
open import Equivalence
|
open import Equivalence
|
||||||
|
@ -38,6 +39,9 @@ module _ (ks : List A) where
|
||||||
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
||||||
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
||||||
|
|
||||||
|
≈-dec : IsDecidable _≈₂_ → IsDecidable _≈_
|
||||||
|
≈-dec ≈₂-dec fm₁ fm₂ = ≈ᵐ-dec ≈₂-dec (proj₁ fm₁) (proj₁ fm₂)
|
||||||
|
|
||||||
_⊔_ : FiniteMap → FiniteMap → FiniteMap
|
_⊔_ : FiniteMap → FiniteMap → FiniteMap
|
||||||
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊔ᵐ m₂ , trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)
|
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊔ᵐ m₂ , trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)
|
||||||
|
|
||||||
|
|
|
@ -582,7 +582,7 @@ Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
|
||||||
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
||||||
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||||||
|
|
||||||
module _ (≈₂-dec : ∀ (b₁ b₂ : B) → Dec (b₁ ≈₂ b₂)) where
|
module _ (≈₂-dec : IsDecidable _≈₂_) where
|
||||||
private module _ where
|
private module _ where
|
||||||
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
||||||
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
||||||
|
|
Loading…
Reference in New Issue
Block a user