Rename some definitions in Nat and expose bundle
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
a920608bef
commit
08f3f49640
|
@ -18,8 +18,8 @@ private
|
||||||
≡-⊓-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≡ a₂ → a₃ ≡ a₄ → (a₁ ⊓ a₃) ≡ (a₂ ⊓ a₄)
|
≡-⊓-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≡ a₂ → a₃ ≡ a₄ → (a₁ ⊓ a₃) ≡ (a₂ ⊓ a₄)
|
||||||
≡-⊓-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl
|
≡-⊓-cong a₁≡a₂ a₃≡a₄ rewrite a₁≡a₂ rewrite a₃≡a₄ = refl
|
||||||
|
|
||||||
NatIsMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_
|
isMaxSemilattice : IsSemilattice ℕ _≡_ _⊔_
|
||||||
NatIsMaxSemilattice = record
|
isMaxSemilattice = record
|
||||||
{ ≈-equiv = record
|
{ ≈-equiv = record
|
||||||
{ ≈-refl = refl
|
{ ≈-refl = refl
|
||||||
; ≈-sym = sym
|
; ≈-sym = sym
|
||||||
|
@ -31,8 +31,8 @@ NatIsMaxSemilattice = record
|
||||||
; ⊔-idemp = ⊔-idem
|
; ⊔-idemp = ⊔-idem
|
||||||
}
|
}
|
||||||
|
|
||||||
NatIsMinSemilattice : IsSemilattice ℕ _≡_ _⊓_
|
isMinSemilattice : IsSemilattice ℕ _≡_ _⊓_
|
||||||
NatIsMinSemilattice = record
|
isMinSemilattice = record
|
||||||
{ ≈-equiv = record
|
{ ≈-equiv = record
|
||||||
{ ≈-refl = refl
|
{ ≈-refl = refl
|
||||||
; ≈-sym = sym
|
; ≈-sym = sym
|
||||||
|
@ -74,10 +74,18 @@ private
|
||||||
helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
|
helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
|
||||||
helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
|
helper x⊔x⊓y≤x⊔x x⊔x≡x rewrite x⊔x≡x = x⊔x⊓y≤x⊔x
|
||||||
|
|
||||||
NatIsLattice : IsLattice ℕ _≡_ _⊔_ _⊓_
|
isLattice : IsLattice ℕ _≡_ _⊔_ _⊓_
|
||||||
NatIsLattice = record
|
isLattice = record
|
||||||
{ joinSemilattice = NatIsMaxSemilattice
|
{ joinSemilattice = isMaxSemilattice
|
||||||
; meetSemilattice = NatIsMinSemilattice
|
; meetSemilattice = isMinSemilattice
|
||||||
; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y}
|
; absorb-⊔-⊓ = λ x y → maxmin-absorb {x} {y}
|
||||||
; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y}
|
; absorb-⊓-⊔ = λ x y → minmax-absorb {x} {y}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
lattice : Lattice ℕ
|
||||||
|
lattice = record
|
||||||
|
{ _≈_ = _≡_
|
||||||
|
; _⊔_ = _⊔_
|
||||||
|
; _⊓_ = _⊓_
|
||||||
|
; isLattice = isLattice
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user