Start on sign analysis (mostly just imports)
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
75f981cb75
commit
0c30f8be48
50
Analysis/Sign.agda
Normal file
50
Analysis/Sign.agda
Normal file
|
@ -0,0 +1,50 @@
|
||||||
|
module Analysis.Sign where
|
||||||
|
|
||||||
|
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||||
|
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
|
||||||
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
|
|
||||||
|
open import Language
|
||||||
|
open import Lattice
|
||||||
|
|
||||||
|
data Sign : Set where
|
||||||
|
+ : Sign
|
||||||
|
- : Sign
|
||||||
|
0ˢ : Sign
|
||||||
|
|
||||||
|
-- g for siGn; s is used for strings and i is not very descriptive.
|
||||||
|
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
||||||
|
_≟ᵍ_ + + = yes refl
|
||||||
|
_≟ᵍ_ + - = no (λ ())
|
||||||
|
_≟ᵍ_ + 0ˢ = no (λ ())
|
||||||
|
_≟ᵍ_ - + = no (λ ())
|
||||||
|
_≟ᵍ_ - - = yes refl
|
||||||
|
_≟ᵍ_ - 0ˢ = no (λ ())
|
||||||
|
_≟ᵍ_ 0ˢ + = no (λ ())
|
||||||
|
_≟ᵍ_ 0ˢ - = no (λ ())
|
||||||
|
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
||||||
|
|
||||||
|
module _ (prog : Program) where
|
||||||
|
open Program prog
|
||||||
|
|
||||||
|
-- embelish 'sign' with a top and bottom element.
|
||||||
|
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec)
|
||||||
|
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||||
|
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
||||||
|
|
||||||
|
|
||||||
|
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
|
||||||
|
|
||||||
|
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||||
|
open import Lattice.Bundles.FiniteValueMap String SignLattice _≟ˢ_ renaming (finiteHeightLattice to finiteHeightLatticeᵛ-if-B-finite; FiniteHeightType to FiniteHeightTypeᵛ; _≈_ to _≈ᵛ_; ≈-dec to ≈ᵛ-dec-if-≈ᵍ-dec)
|
||||||
|
|
||||||
|
|
||||||
|
VariableSigns = FiniteHeightTypeᵛ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
|
||||||
|
finiteHeightLatticeᵛ = finiteHeightLatticeᵛ-if-B-finite finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
|
||||||
|
≈ᵛ-dec = ≈ᵛ-dec-if-≈ᵍ-dec finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
|
||||||
|
|
||||||
|
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
|
||||||
|
open import Lattice.Bundles.FiniteValueMap State VariableSigns _≟_ renaming (finiteHeightLattice to finiteHeightLatticeᵐ-if-B-finite; FiniteHeightType to FiniteHeightTypeᵐ)
|
||||||
|
|
||||||
|
StateVariables = FiniteHeightTypeᵐ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
|
||||||
|
finiteHeightLatticeᵐ = finiteHeightLatticeᵐ-if-B-finite finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
|
Loading…
Reference in New Issue
Block a user