Use instance search to avoid multiply-nested modules

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2024-12-31 00:21:10 -08:00
parent 9131214880
commit 10332351ea
2 changed files with 159 additions and 133 deletions

View File

@@ -159,19 +159,20 @@ s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl)
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot
⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁
latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ
latticeInterpretationᵍ = record
{ ⟦_⟧ = ⟦_⟧ᵍ
; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈
; ⟦⟧-⊔- = ⟦⟧ᵍ-⊔ᵍ-
; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-ᵍ-
}
instance
latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ
latticeInterpretationᵍ = record
{ ⟦_⟧ = ⟦_⟧
; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ
; ⟦⟧-⊔- = ⟦⟧ᵍ-ᵍ-
; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧
}
module WithProg (prog : Program) where
open Program prog
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
open ForwardWithProg
open ForwardWithProg hiding (analyze-correct)
eval : (e : Expr) VariableValues SignLattice
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
@@ -222,15 +223,13 @@ module WithProg (prog : Program) where
eval-Mono (# 0) _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
module ForwardWithEval = ForwardWithProg.WithEvaluator eval eval-Mono
open ForwardWithEval using (result)
instance
SignEval : Evaluator
SignEval = record { eval = eval; eval-Mono = eval-Mono }
-- For debugging purposes, print out the result.
output = show result
module ForwardWithInterp = ForwardWithEval.WithInterpretation latticeInterpretationᵍ
open ForwardWithInterp using (⟦_⟧ᵛ; InterpretationValid)
-- This should have fewer cases -- the same number as the actual 'plus' above.
-- But agda only simplifies on first argument, apparently, so we are stuck
-- listing them all.
@@ -281,16 +280,16 @@ module WithProg (prog : Program) where
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
eval-Valid : InterpretationValid
eval-Valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
plus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-Valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
minus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-Valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ
eval-valid : IsValid
eval-valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
plus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
minus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ
with ∈k-decᵛ x (proj₁ (proj₁ vs))
... | yes x∈kvs = ⟦vs⟧ρ (proj₂ (locateᵛ {x} {vs} x∈kvs)) x,v∈ρ
... | no x∉kvs = tt
eval-Valid (⇒ᵉ- ρ 0) _ = refl
eval-Valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
eval-valid (⇒ᵉ- ρ 0) _ = refl
eval-valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
open ForwardWithInterp.WithValidity eval-Valid using (analyze-correct) public
analyze-correct = ForwardWithProg.analyze-correct