Clean up AboveBelow slightly
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
8516f58b1d
commit
112dcb2208
@ -10,7 +10,9 @@ module Lattice.AboveBelow {a} (A : Set a)
|
||||
open import Data.Empty using (⊥-elim)
|
||||
open import Data.Product using (_,_)
|
||||
open import Data.Nat using (_≤_; ℕ; z≤n; s≤s; suc)
|
||||
open import Function using (_∘_)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst; refl)
|
||||
|
||||
import Chain
|
||||
|
||||
open IsEquivalence ≈₁-equiv using () renaming (≈-refl to ≈₁-refl; ≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||
@ -61,6 +63,9 @@ data _≈_ : AboveBelow → AboveBelow → Set a where
|
||||
≈-dec [ x ] ⊥ = no λ ()
|
||||
≈-dec [ x ] ⊤ = no λ ()
|
||||
|
||||
-- Any object can be wrapped in an 'above below' to make it a lattice,
|
||||
-- since ⊤ and ⊥ are the largest and least elements, and the rest are left
|
||||
-- unordered. That's what this module does.
|
||||
module Plain where
|
||||
_⊔_ : AboveBelow → AboveBelow → AboveBelow
|
||||
⊥ ⊔ x = x
|
||||
@ -126,7 +131,7 @@ module Plain where
|
||||
with ≈₁-dec x₂ x₃ | ≈₁-dec x₁ x₂
|
||||
... | no x₂̷≈x₃ | no _ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₂̷≈x₃ = ≈-⊤-⊤
|
||||
... | no x₂̷≈x₃ | yes x₁≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ x₂̷≈x₃
|
||||
rewrite x̷≈y⇒[x]⊔[y]≡⊤ λ x₁≈x₃ → x₂̷≈x₃ (≈₁-trans (≈₁-sym x₁≈x₂) x₁≈x₃) = ≈-⊤-⊤
|
||||
rewrite x̷≈y⇒[x]⊔[y]≡⊤ (x₂̷≈x₃ ∘ (≈₁-trans (≈₁-sym x₁≈x₂))) = ≈-⊤-⊤
|
||||
... | yes x₂≈x₃ | yes x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] x₂≈x₃
|
||||
rewrite x≈y⇒[x]⊔[y]≡[x] x₁≈x₂
|
||||
rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-trans x₁≈x₂ x₂≈x₃) = ≈-refl
|
||||
@ -139,7 +144,7 @@ module Plain where
|
||||
⊔-comm x ⊥ rewrite x⊔⊥≡x x = ≈-refl
|
||||
⊔-comm [ x₁ ] [ x₂ ] with ≈₁-dec x₁ x₂
|
||||
... | yes x₁≈x₂ rewrite x≈y⇒[x]⊔[y]≡[x] (≈₁-sym x₁≈x₂) = ≈-lift x₁≈x₂
|
||||
... | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ λ x₂≈x₁ → (x₁̷≈x₂ (≈₁-sym x₂≈x₁)) = ≈-⊤-⊤
|
||||
... | no x₁̷≈x₂ rewrite x̷≈y⇒[x]⊔[y]≡⊤ (x₁̷≈x₂ ∘ ≈₁-sym) = ≈-⊤-⊤
|
||||
|
||||
⊔-idemp : ∀ ab → (ab ⊔ ab) ≈ ab
|
||||
⊔-idemp ⊤ = ≈-⊤-⊤
|
||||
|
Loading…
Reference in New Issue
Block a user