Reorder definitions to be in the order the graph is built up
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
baece236d3
commit
14214ab5e7
@ -64,11 +64,11 @@ record Graph : Set where
|
|||||||
Adjacency-merge : Adjacency → Adjacency → Adjacency
|
Adjacency-merge : Adjacency → Adjacency → Adjacency
|
||||||
Adjacency-merge adj₁ adj₂ n₁ n₂ = adj₁ n₁ n₂ ++ˡ adj₂ n₁ n₂
|
Adjacency-merge adj₁ adj₂ n₁ n₂ = adj₁ n₁ n₂ ++ˡ adj₂ n₁ n₂
|
||||||
|
|
||||||
through : Node → Adjacency → Adjacency
|
adj⁰ : Adjacency
|
||||||
through n adj n₁ n₂ = cartesianProductWith _++_ (adj n₁ n) (adj n n₂) ++ˡ adj n₁ n₂
|
adj⁰ n₁ n₂
|
||||||
|
with n₁ ≟ n₂
|
||||||
through-monotonic : ∀ adj n {n₁ n₂ p} → p ∈ˡ adj n₁ n₂ → p ∈ˡ (through n adj) n₁ n₂
|
... | yes refl = done ∷ []
|
||||||
through-monotonic adj n p∈adjn₁n₂ = ∈ˡ-++⁺ʳ _ p∈adjn₁n₂
|
... | no _ = []
|
||||||
|
|
||||||
seedWithEdges : ∀ (es : List Edge) → (∀ {e} → e ∈ˡ es → e ∈ˡ edges) → Adjacency → Adjacency
|
seedWithEdges : ∀ (es : List Edge) → (∀ {e} → e ∈ˡ es → e ∈ˡ edges) → Adjacency → Adjacency
|
||||||
seedWithEdges es e∈es⇒e∈edges adj = foldr (λ ((n₁ , n₂) , n₁n₂∈edges) → Adjacency-update n₁ n₂ ((step n₁n₂∈edges done) ∷_)) adj (mapWith∈ˡ es (λ {e} e∈es → (e , e∈es⇒e∈edges e∈es)))
|
seedWithEdges es e∈es⇒e∈edges adj = foldr (λ ((n₁ , n₂) , n₁n₂∈edges) → Adjacency-update n₁ n₂ ((step n₁n₂∈edges done) ∷_)) adj (mapWith∈ˡ es (λ {e} e∈es → (e , e∈es⇒e∈edges e∈es)))
|
||||||
@ -87,18 +87,18 @@ record Graph : Set where
|
|||||||
... | no _ | yes _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es
|
... | no _ | yes _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es
|
||||||
... | yes refl | no _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es
|
... | yes refl | no _ = e∈seedWithEdges (λ e∈es → e∈es⇒e∈edges (there e∈es)) n₁n₂∈es
|
||||||
|
|
||||||
adj⁰ : Adjacency
|
|
||||||
adj⁰ n₁ n₂
|
|
||||||
with n₁ ≟ n₂
|
|
||||||
... | yes refl = done ∷ []
|
|
||||||
... | no _ = []
|
|
||||||
|
|
||||||
adj¹ : Adjacency
|
adj¹ : Adjacency
|
||||||
adj¹ = seedWithEdges edges (λ x → x) adj⁰
|
adj¹ = seedWithEdges edges (λ x → x) adj⁰
|
||||||
|
|
||||||
edge∈adj¹ : ∀ {n₁ n₂} (n₁n₂∈edges : (n₁ , n₂) ∈ˡ edges) → (step n₁n₂∈edges done) ∈ˡ adj¹ n₁ n₂
|
edge∈adj¹ : ∀ {n₁ n₂} (n₁n₂∈edges : (n₁ , n₂) ∈ˡ edges) → (step n₁n₂∈edges done) ∈ˡ adj¹ n₁ n₂
|
||||||
edge∈adj¹ = e∈seedWithEdges (λ x → x)
|
edge∈adj¹ = e∈seedWithEdges (λ x → x)
|
||||||
|
|
||||||
|
through : Node → Adjacency → Adjacency
|
||||||
|
through n adj n₁ n₂ = cartesianProductWith _++_ (adj n₁ n) (adj n n₂) ++ˡ adj n₁ n₂
|
||||||
|
|
||||||
|
through-monotonic : ∀ adj n {n₁ n₂ p} → p ∈ˡ adj n₁ n₂ → p ∈ˡ (through n adj) n₁ n₂
|
||||||
|
through-monotonic adj n p∈adjn₁n₂ = ∈ˡ-++⁺ʳ _ p∈adjn₁n₂
|
||||||
|
|
||||||
throughAll : List Node → Adjacency
|
throughAll : List Node → Adjacency
|
||||||
throughAll = foldr through adj¹
|
throughAll = foldr through adj¹
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user