Clean up FiniteMap module structure a bit
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
ffe9d193d9
commit
1432dfa669
@ -54,6 +54,7 @@ open VariableValuesFiniteMap
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||||
; ∈k-dec to ∈k-decᵛ
|
||||
; all-equal-keys to all-equal-keysᵛ
|
||||
; Provenance-union to Provenance-unionᵛ
|
||||
)
|
||||
public
|
||||
open IsLattice isLatticeᵛ
|
||||
@ -64,12 +65,6 @@ open IsLattice isLatticeᵛ
|
||||
; ⊔-idemp to ⊔ᵛ-idemp
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism String L vars
|
||||
using ()
|
||||
renaming
|
||||
( Provenance-union to Provenance-unionᵐ
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight String L vars vars-Unique
|
||||
using ()
|
||||
renaming
|
||||
@ -95,20 +90,16 @@ open StateVariablesFiniteMap
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ≈-Decidable to ≈ᵐ-Decidable
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
; ≈-sym to ≈ᵐ-sym
|
||||
)
|
||||
public
|
||||
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight State VariableValues states states-Unique
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||
)
|
||||
public
|
||||
open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
|
||||
using ()
|
||||
renaming
|
||||
( ≈-sym to ≈ᵐ-sym
|
||||
)
|
||||
public
|
||||
|
||||
-- We now have our (state -> (variables -> value)) map.
|
||||
-- Define a couple of helpers to retrieve values from it. Specifically,
|
||||
@ -196,7 +187,7 @@ module _ {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}} where
|
||||
⟦⟧ᵛ-⊔ᵛ-∨ : ∀ {vs₁ vs₂ : VariableValues} → (⟦ vs₁ ⟧ᵛ ∨ ⟦ vs₂ ⟧ᵛ) ⇒ ⟦ vs₁ ⊔ᵛ vs₂ ⟧ᵛ
|
||||
⟦⟧ᵛ-⊔ᵛ-∨ {vs₁} {vs₂} ρ ⟦vs₁⟧ρ∨⟦vs₂⟧ρ {k} {l} k,l∈vs₁₂ {v} k,v∈ρ
|
||||
with ((l₁ , l₂) , (refl , (k,l₁∈vs₁ , k,l₂∈vs₂)))
|
||||
← Provenance-unionᵐ vs₁ vs₂ k,l∈vs₁₂
|
||||
← Provenance-unionᵛ vs₁ vs₂ k,l∈vs₁₂
|
||||
with ⟦vs₁⟧ρ∨⟦vs₂⟧ρ
|
||||
... | inj₁ ⟦vs₁⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₁ (⟦vs₁⟧ρ k,l₁∈vs₁ k,v∈ρ))
|
||||
... | inj₂ ⟦vs₂⟧ρ = ⟦⟧ˡ-⊔ˡ-∨ {l₁} {l₂} v (inj₂ (⟦vs₂⟧ρ k,l₂∈vs₂ k,v∈ρ))
|
||||
|
@ -143,6 +143,7 @@ private module WithKeys (ks : List A) where
|
||||
λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} →
|
||||
IsEquivalence.≈-trans ≈ᵐ-equiv {m₁} {m₂} {m₃}
|
||||
}
|
||||
open IsEquivalence ≈-equiv public
|
||||
|
||||
instance
|
||||
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
|
||||
@ -253,6 +254,33 @@ private module WithKeys (ks : List A) where
|
||||
... | yes k∈km₁ | no k∉km₂ = ⊥-elim (∈k-exclusive fm₁ fm₂ (k∈km₁ , k∉km₂))
|
||||
... | no k∉km₁ | yes k∈km₂ = ⊥-elim (∈k-exclusive fm₂ fm₁ (k∈km₂ , k∉km₁))
|
||||
|
||||
private
|
||||
_⊆ᵐ_ : ∀ {ks₁ ks₂ : List A} → WithKeys.FiniteMap ks₁ → WithKeys.FiniteMap ks₂ → Set
|
||||
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
|
||||
|
||||
_∈ᵐ_ : ∀ {ks : List A} → A × B → WithKeys.FiniteMap ks → Set
|
||||
_∈ᵐ_ {ks} = WithKeys._∈_ ks
|
||||
|
||||
FromBothMaps : ∀ (k : A) (v : B) {ks : List A} (fm₁ fm₂ : WithKeys.FiniteMap ks) → Set
|
||||
FromBothMaps k v fm₁ fm₂ =
|
||||
Σ (B × B)
|
||||
(λ (v₁ , v₂) → ( (v ≡ v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
|
||||
|
||||
Provenance-union : ∀ {ks : List A} (fm₁ fm₂ : WithKeys.FiniteMap ks) {k : A} {v : B} →
|
||||
(k , v) ∈ᵐ (WithKeys._⊔_ ks fm₁ fm₂) → FromBothMaps k v fm₁ fm₂
|
||||
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
|
||||
with Expr-Provenance-≡ ((` m₁) ∪ (` m₂)) k,v∈fm₁fm₂
|
||||
... | in₁ (single k,v∈m₁) k∉km₂
|
||||
with k∈km₁ ← (WithKeys.forget k,v∈m₁)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₂ k∈km₁)
|
||||
... | in₂ k∉km₁ (single k,v∈m₂)
|
||||
with k∈km₂ ← (WithKeys.forget k,v∈m₂)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₁ k∈km₂)
|
||||
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
|
||||
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
||||
|
||||
module IterProdIsomorphism where
|
||||
open WithKeys
|
||||
open import Data.Unit using (tt)
|
||||
@ -297,9 +325,6 @@ module IterProdIsomorphism where
|
||||
|
||||
|
||||
private
|
||||
_⊆ᵐ_ : ∀ {ks₁ ks₂ : List A} → FiniteMap ks₁ → FiniteMap ks₂ → Set
|
||||
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
|
||||
|
||||
_≈ⁱᵖ_ : ∀ {n : ℕ} → IterProd n → IterProd n → Set
|
||||
_≈ⁱᵖ_ {n} = IP._≈_ {n}
|
||||
|
||||
@ -307,8 +332,6 @@ module IterProdIsomorphism where
|
||||
IterProd (length ks) → IterProd (length ks) → IterProd (length ks)
|
||||
_⊔ⁱᵖ_ {ks} = IP._⊔_ {length ks}
|
||||
|
||||
_∈ᵐ_ : ∀ {ks : List A} → A × B → FiniteMap ks → Set
|
||||
_∈ᵐ_ {ks} = _∈_ ks
|
||||
|
||||
to-build : ∀ {b : B} {ks : List A} (uks : Unique ks) →
|
||||
let fm = to uks (IP.build b tt (length ks))
|
||||
@ -367,26 +390,6 @@ module IterProdIsomorphism where
|
||||
fm'₂⊆fm'₁ k' v' k',v'∈fm'₂
|
||||
in (v'' , (v'≈v'' , there k',v''∈fm'₁))
|
||||
|
||||
FromBothMaps : ∀ (k : A) (v : B) {ks : List A} (fm₁ fm₂ : FiniteMap ks) → Set
|
||||
FromBothMaps k v fm₁ fm₂ =
|
||||
Σ (B × B)
|
||||
(λ (v₁ , v₂) → ( (v ≡ v₁ ⊔₂ v₂) × ((k , v₁) ∈ᵐ fm₁ × (k , v₂) ∈ᵐ fm₂)))
|
||||
|
||||
Provenance-union : ∀ {ks : List A} (fm₁ fm₂ : FiniteMap ks) {k : A} {v : B} →
|
||||
(k , v) ∈ᵐ (_⊔_ ks fm₁ fm₂) → FromBothMaps k v fm₁ fm₂
|
||||
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
|
||||
with Expr-Provenance-≡ ((` m₁) ∪ (` m₂)) k,v∈fm₁fm₂
|
||||
... | in₁ (single k,v∈m₁) k∉km₂
|
||||
with k∈km₁ ← (forget k,v∈m₁)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₂ k∈km₁)
|
||||
... | in₂ k∉km₁ (single k,v∈m₂)
|
||||
with k∈km₂ ← (forget k,v∈m₂)
|
||||
rewrite trans ks₁≡ks (sym ks₂≡ks) =
|
||||
⊥-elim (k∉km₁ k∈km₂)
|
||||
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
|
||||
((v₁ , v₂) , (refl , (k,v₁∈m₁ , k,v₂∈m₂)))
|
||||
|
||||
private
|
||||
first-key-in-map : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) →
|
||||
Σ B (λ v → (k , v) ∈ᵐ fm)
|
||||
|
Loading…
Reference in New Issue
Block a user