Prove that constant functions are monotonic
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
c932210d37
commit
164fc3636f
11
Lattice.agda
11
Lattice.agda
|
@ -103,6 +103,17 @@ record IsSemilattice {a} (A : Set a)
|
||||||
, λ a₂≈a₄ → a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
|
, λ a₂≈a₄ → a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
|
||||||
)
|
)
|
||||||
|
|
||||||
|
module _ {a b} {A : Set a} {B : Set b}
|
||||||
|
{_≈₁_ : A → A → Set a} {_⊔₁_ : A → A → A}
|
||||||
|
{_≈₂_ : B → B → Set b} {_⊔₂_ : B → B → B}
|
||||||
|
(lA : IsSemilattice A _≈₁_ _⊔₁_) (lB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||||
|
|
||||||
|
open IsSemilattice lA using () renaming (_≼_ to _≼₁_)
|
||||||
|
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp)
|
||||||
|
|
||||||
|
const-Mono : ∀ (x : B) → Monotonic _≼₁_ _≼₂_ (λ _ → x)
|
||||||
|
const-Mono x _ = ⊔₂-idemp x
|
||||||
|
|
||||||
record IsLattice {a} (A : Set a)
|
record IsLattice {a} (A : Set a)
|
||||||
(_≈_ : A → A → Set a)
|
(_≈_ : A → A → Set a)
|
||||||
(_⊔_ : A → A → A)
|
(_⊔_ : A → A → A)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user