Prove that constant functions are monotonic

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-03-03 17:23:57 -08:00
parent c932210d37
commit 164fc3636f

View File

@ -103,6 +103,17 @@ record IsSemilattice {a} (A : Set a)
, λ a₂≈a₄ a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄))) , λ a₂≈a₄ a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
) )
module _ {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_⊔₁_ : A A A}
{_≈₂_ : B B Set b} {_⊔₂_ : B B B}
(lA : IsSemilattice A _≈₁_ _⊔₁_) (lB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice lA using () renaming (_≼_ to _≼₁_)
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp)
const-Mono : (x : B) Monotonic _≼₁_ _≼₂_ (λ _ x)
const-Mono x _ = ⊔₂-idemp x
record IsLattice {a} (A : Set a) record IsLattice {a} (A : Set a)
(_≈_ : A A Set a) (_≈_ : A A Set a)
(_⊔_ : A A A) (_⊔_ : A A A)