Prove that iterated products are finite height
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
0ba4b46e16
commit
16c4d13242
|
@ -6,10 +6,14 @@ module Lattice.IterProd {a} {A B : Set a}
|
|||
(_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B)
|
||||
(lA : IsLattice A _≈₁_ _⊔₁_ _⊓₁_) (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Agda.Primitive using (lsuc)
|
||||
open import Data.Nat using (ℕ; suc; _+_)
|
||||
open import Data.Product using (_×_)
|
||||
open import Utils using (iterate)
|
||||
|
||||
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
|
||||
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
|
||||
|
||||
IterProd : ℕ → Set a
|
||||
IterProd k = iterate k (λ t → A × t) B
|
||||
|
||||
|
@ -17,14 +21,6 @@ IterProd k = iterate k (λ t → A × t) B
|
|||
-- records, perform the recursion, and unpackage.
|
||||
|
||||
private module _ where
|
||||
ALattice : Lattice A
|
||||
ALattice = record
|
||||
{ _≈_ = _≈₁_
|
||||
; _⊔_ = _⊔₁_
|
||||
; _⊓_ = _⊓₁_
|
||||
; isLattice = lA
|
||||
}
|
||||
|
||||
BLattice : Lattice B
|
||||
BLattice = record
|
||||
{ _≈_ = _≈₂_
|
||||
|
@ -42,14 +38,69 @@ private module _ where
|
|||
; isLattice = isLattice
|
||||
}
|
||||
where
|
||||
RightLattice : Lattice (IterProd k')
|
||||
RightLattice = IterProdLattice {k'}
|
||||
Right : Lattice (IterProd k')
|
||||
Right = IterProdLattice {k'}
|
||||
|
||||
open import Lattice.Prod
|
||||
_≈₁_ (Lattice._≈_ RightLattice)
|
||||
_⊔₁_ (Lattice._⊔_ RightLattice)
|
||||
_⊓₁_ (Lattice._⊓_ RightLattice)
|
||||
lA (Lattice.isLattice RightLattice)
|
||||
_≈₁_ (Lattice._≈_ Right)
|
||||
_⊔₁_ (Lattice._⊔_ Right)
|
||||
_⊓₁_ (Lattice._⊓_ Right)
|
||||
lA (Lattice.isLattice Right)
|
||||
|
||||
module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
(h₁ h₂ : ℕ)
|
||||
(fhA : FixedHeight₁ h₁) (fhB : FixedHeight₂ h₂) where
|
||||
|
||||
private module _ where
|
||||
record FiniteHeightAndDecEq (A : Set a) : Set (lsuc a) where
|
||||
field
|
||||
height : ℕ
|
||||
_≈_ : A → A → Set a
|
||||
_⊔_ : A → A → A
|
||||
_⊓_ : A → A → A
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice A height _≈_ _⊔_ _⊓_
|
||||
≈-dec : IsDecidable _≈_
|
||||
|
||||
open IsFiniteHeightLattice isFiniteHeightLattice public
|
||||
|
||||
BFiniteHeightLattice : FiniteHeightAndDecEq B
|
||||
BFiniteHeightLattice = record
|
||||
{ height = h₂
|
||||
; _≈_ = _≈₂_
|
||||
; _⊔_ = _⊔₂_
|
||||
; _⊓_ = _⊓₂_
|
||||
; isFiniteHeightLattice = record
|
||||
{ isLattice = lB
|
||||
; fixedHeight = fhB
|
||||
}
|
||||
; ≈-dec = ≈₂-dec
|
||||
}
|
||||
|
||||
IterProdFiniteHeightLattice : ∀ {k : ℕ} → FiniteHeightAndDecEq (IterProd k)
|
||||
IterProdFiniteHeightLattice {0} = BFiniteHeightLattice
|
||||
IterProdFiniteHeightLattice {suc k'} = record
|
||||
{ height = h₁ + FiniteHeightAndDecEq.height Right
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
≈₁-dec (FiniteHeightAndDecEq.≈-dec Right)
|
||||
h₁ (FiniteHeightAndDecEq.height Right)
|
||||
fhA (IsFiniteHeightLattice.fixedHeight (FiniteHeightAndDecEq.isFiniteHeightLattice Right))
|
||||
; ≈-dec = ≈-dec ≈₁-dec (FiniteHeightAndDecEq.≈-dec Right)
|
||||
}
|
||||
where
|
||||
Right = IterProdFiniteHeightLattice {k'}
|
||||
|
||||
open import Lattice.Prod
|
||||
_≈₁_ (FiniteHeightAndDecEq._≈_ Right)
|
||||
_⊔₁_ (FiniteHeightAndDecEq._⊔_ Right)
|
||||
_⊓₁_ (FiniteHeightAndDecEq._⊓_ Right)
|
||||
lA (FiniteHeightAndDecEq.isLattice Right)
|
||||
|
||||
module _ (k : ℕ) where
|
||||
open FiniteHeightAndDecEq (IterProdFiniteHeightLattice {k}) using (fixedHeight) public
|
||||
|
||||
-- Expose the computed definition in public.
|
||||
module _ (k : ℕ) where
|
||||
|
|
Loading…
Reference in New Issue
Block a user