Use records rather than nested pairs to represent 'fixed height'
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
95669b2c65
commit
16fa4cd1d8
@ -19,6 +19,7 @@ open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
open import Data.Unit using (⊤)
|
||||
open import Function using (_∘_; flip)
|
||||
import Chain
|
||||
|
||||
open import Utils using (Pairwise; _⇒_; _∨_)
|
||||
import Lattice.FiniteValueMap
|
||||
@ -77,7 +78,7 @@ module WithProg (prog : Program) where
|
||||
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
|
||||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||||
⊥ᵛ = proj₁ (proj₁ (proj₁ fixedHeightᵛ))
|
||||
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
|
||||
|
||||
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
|
||||
module StateVariablesFiniteMap = Lattice.FiniteValueMap.WithKeys _≟_ isLatticeᵛ states
|
||||
|
13
Chain.agda
13
Chain.agda
@ -10,7 +10,7 @@ open import Data.Nat using (ℕ; suc; _+_; _≤_)
|
||||
open import Data.Nat.Properties using (+-comm; m+1+n≰m)
|
||||
open import Data.Product using (_×_; Σ; _,_)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
||||
open import Data.Empty using (⊥)
|
||||
open import Data.Empty as Empty using ()
|
||||
|
||||
open IsEquivalence ≈-equiv
|
||||
|
||||
@ -38,11 +38,16 @@ module _ where
|
||||
Bounded : ℕ → Set a
|
||||
Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
|
||||
|
||||
Bounded-suc-n : ∀ {a₁ a₂ : A} {n : ℕ} → Bounded n → Chain a₁ a₂ (suc n) → ⊥
|
||||
Bounded-suc-n : ∀ {a₁ a₂ : A} {n : ℕ} → Bounded n → Chain a₁ a₂ (suc n) → Empty.⊥
|
||||
Bounded-suc-n {a₁} {a₂} {n} bounded c = (m+1+n≰m n n+1≤n)
|
||||
where
|
||||
n+1≤n : n + 1 ≤ n
|
||||
n+1≤n rewrite (+-comm n 1) = bounded c
|
||||
|
||||
Height : ℕ → Set a
|
||||
Height height = (Σ (A × A) (λ (a₁ , a₂) → Chain a₁ a₂ height) × Bounded height)
|
||||
record Height (height : ℕ) : Set a where
|
||||
field
|
||||
⊥ : A
|
||||
⊤ : A
|
||||
|
||||
longestChain : Chain ⊥ ⊤ height
|
||||
bounded : Bounded height
|
||||
|
@ -23,15 +23,21 @@ import Chain
|
||||
module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||
|
||||
private
|
||||
⊥ᴬ : A
|
||||
⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight))
|
||||
open ChainA.Height fixedHeight
|
||||
using ()
|
||||
renaming
|
||||
( ⊥ to ⊥ᴬ
|
||||
; longestChain to longestChainᴬ
|
||||
; bounded to boundedᴬ
|
||||
)
|
||||
|
||||
|
||||
⊥ᴬ≼ : ∀ (a : A) → ⊥ᴬ ≼ a
|
||||
⊥ᴬ≼ a with ≈-dec a ⊥ᴬ
|
||||
... | yes a≈⊥ᴬ = ≼-cong a≈⊥ᴬ ≈-refl (≼-refl a)
|
||||
... | no a̷≈⊥ᴬ with ≈-dec ⊥ᴬ (a ⊓ ⊥ᴬ)
|
||||
... | yes ⊥ᴬ≈a⊓⊥ᴬ = ≈-trans (⊔-comm ⊥ᴬ a) (≈-trans (≈-⊔-cong (≈-refl {a}) ⊥ᴬ≈a⊓⊥ᴬ) (absorb-⊔-⊓ a ⊥ᴬ))
|
||||
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) (ChainA.step x≺⊥ᴬ ≈-refl (proj₂ (proj₁ fixedHeight))))
|
||||
... | no ⊥ᴬ̷≈a⊓⊥ᴬ = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ (ChainA.step x≺⊥ᴬ ≈-refl longestChainᴬ))
|
||||
where
|
||||
⊥ᴬ⊓a̷≈⊥ᴬ : ¬ (⊥ᴬ ⊓ a) ≈ ⊥ᴬ
|
||||
⊥ᴬ⊓a̷≈⊥ᴬ = λ ⊥ᴬ⊓a≈⊥ᴬ → ⊥ᴬ̷≈a⊓⊥ᴬ (≈-trans (≈-sym ⊥ᴬ⊓a≈⊥ᴬ) (⊓-comm _ _))
|
||||
@ -45,7 +51,7 @@ private
|
||||
-- out, we have exceeded h steps, which shouldn't be possible.
|
||||
|
||||
doStep : ∀ (g hᶜ : ℕ) (a₁ a₂ : A) (c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h) (a₂≼fa₂ : a₂ ≼ f a₂) → Σ A (λ a → a ≈ f a)
|
||||
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
doStep 0 hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
|
||||
doStep (suc g') hᶜ a₁ a₂ c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
with ≈-dec a₂ (f a₂)
|
||||
... | yes a₂≈fa₂ = (a₂ , a₂≈fa₂)
|
||||
@ -71,7 +77,7 @@ private
|
||||
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h)
|
||||
(a₂≼fa₂ : a₂ ≼ f a₂) →
|
||||
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ a
|
||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n (proj₂ fixedHeight) c)
|
||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
|
||||
stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||
with ≈-dec a₂ (f a₂)
|
||||
... | yes _ = a₂≼a
|
||||
|
@ -38,8 +38,9 @@ module TransportFiniteHeight
|
||||
open IsEquivalence ≈₁-equiv using () renaming (≈-sym to ≈₁-sym; ≈-trans to ≈₁-trans)
|
||||
open IsEquivalence ≈₂-equiv using () renaming (≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans)
|
||||
|
||||
open import Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
||||
open import Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
||||
import Chain
|
||||
open Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong using () renaming (Chain to Chain₁; done to done₁; step to step₁)
|
||||
open Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong using () renaming (Chain to Chain₂; done to done₂; step to step₂)
|
||||
|
||||
private
|
||||
f-Injective : Injective _≈₁_ _≈₂_ f
|
||||
@ -65,10 +66,17 @@ module TransportFiniteHeight
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice B height _≈₂_ _⊔₂_ _⊓₂_
|
||||
isFiniteHeightLattice =
|
||||
let
|
||||
(((a₁ , a₂) , c) , bounded₁) = IsFiniteHeightLattice.fixedHeight fhlA
|
||||
open Chain.Height (IsFiniteHeightLattice.fixedHeight fhlA)
|
||||
using ()
|
||||
renaming (⊥ to ⊥₁; ⊤ to ⊤₁; bounded to bounded₁; longestChain to c)
|
||||
in record
|
||||
{ isLattice = lB
|
||||
; fixedHeight = (((f a₁ , f a₂), portChain₁ c) , λ c' → bounded₁ (portChain₂ c'))
|
||||
; fixedHeight = record
|
||||
{ ⊥ = f ⊥₁
|
||||
; ⊤ = f ⊤₁
|
||||
; longestChain = portChain₁ c
|
||||
; bounded = λ c' → bounded₁ (portChain₂ c')
|
||||
}
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice B
|
||||
|
@ -355,7 +355,12 @@ module Plain (x : A) where
|
||||
rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c)
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 2
|
||||
fixedHeight = (((⊥ , ⊤) , longestChain) , isLongest)
|
||||
fixedHeight = record
|
||||
{ ⊥ = ⊥
|
||||
; ⊤ = ⊤
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
|
@ -14,6 +14,7 @@ open import Agda.Primitive using (lsuc)
|
||||
open import Data.Nat using (ℕ; zero; suc; _+_)
|
||||
open import Data.Product using (_×_; _,_; proj₁; proj₂)
|
||||
open import Utils using (iterate)
|
||||
open import Chain using (Height)
|
||||
|
||||
open IsLattice lA renaming (FixedHeight to FixedHeight₁)
|
||||
open IsLattice lB renaming (FixedHeight to FixedHeight₂)
|
||||
@ -44,10 +45,10 @@ private
|
||||
fhB : FixedHeight₂ h₂
|
||||
|
||||
⊥₁ : A
|
||||
⊥₁ = proj₁ (proj₁ (proj₁ fhA))
|
||||
⊥₁ = Height.⊥ fhA
|
||||
|
||||
⊥₂ : B
|
||||
⊥₂ = proj₁ (proj₁ (proj₁ fhB))
|
||||
⊥₂ = Height.⊥ fhB
|
||||
|
||||
⊥k : ∀ (k : ℕ) → IterProd k
|
||||
⊥k = build ⊥₁ ⊥₂
|
||||
@ -58,7 +59,7 @@ private
|
||||
fixedHeight : IsLattice.FixedHeight isLattice height
|
||||
≈-dec : IsDecidable _≈_
|
||||
|
||||
⊥-correct : proj₁ (proj₁ (proj₁ fixedHeight)) ≈ ⊥
|
||||
⊥-correct : Height.⊥ fixedHeight ≈ ⊥
|
||||
|
||||
record Everything (k : ℕ) : Set (lsuc a) where
|
||||
T = IterProd k
|
||||
|
@ -143,17 +143,8 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
∙,b-Preserves-≈₁ : ∀ (b : B) → (λ a → (a , b)) Preserves _≈₁_ ⟶ _≈_
|
||||
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
|
||||
|
||||
⊥₁ : A
|
||||
⊥₁ = proj₁ (proj₁ (proj₁ fhA))
|
||||
|
||||
⊤₁ : A
|
||||
⊤₁ = proj₂ (proj₁ (proj₁ fhA))
|
||||
|
||||
⊥₂ : B
|
||||
⊥₂ = proj₁ (proj₁ (proj₁ fhB))
|
||||
|
||||
⊤₂ : B
|
||||
⊤₂ = proj₂ (proj₁ (proj₁ fhB))
|
||||
open ChainA.Height fhA using () renaming (⊥ to ⊥₁; ⊤ to ⊤₁; longestChain to longestChain₁; bounded to bounded₁)
|
||||
open ChainB.Height fhB using () renaming (⊥ to ⊥₂; ⊤ to ⊤₂; longestChain to longestChain₂; bounded to bounded₂)
|
||||
|
||||
unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂)))
|
||||
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||||
@ -172,15 +163,16 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||
))
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
|
||||
fixedHeight =
|
||||
( ( ((⊥₁ , ⊥₂) , (⊤₁ , ⊤₂))
|
||||
, concat
|
||||
(ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA)))
|
||||
(ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ fhB)))
|
||||
)
|
||||
, λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂))
|
||||
)
|
||||
fixedHeight = record
|
||||
{ ⊥ = (⊥₁ , ⊥₂)
|
||||
; ⊤ = (⊤₁ , ⊤₂)
|
||||
; longestChain = concat
|
||||
(ChainMapping₁.Chain-map (λ a → (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) longestChain₁)
|
||||
(ChainMapping₂.Chain-map (λ b → (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) longestChain₂)
|
||||
; bounded = λ a₁b₁a₂b₂ →
|
||||
let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||
in ≤-trans n≤n₁+n₂ (+-mono-≤ (bounded₁ a₁a₂) (bounded₂ b₁b₂))
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
|
@ -108,7 +108,12 @@ private
|
||||
isLongest (done _) = z≤n
|
||||
|
||||
fixedHeight : IsLattice.FixedHeight isLattice 0
|
||||
fixedHeight = (((tt , tt) , longestChain) , isLongest)
|
||||
fixedHeight = record
|
||||
{ ⊥ = tt
|
||||
; ⊤ = tt
|
||||
; longestChain = longestChain
|
||||
; bounded = isLongest
|
||||
}
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice ⊤ 0 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
|
Loading…
Reference in New Issue
Block a user