Use named modules to avoid having to pass redundant parameters

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-03-09 21:46:15 -08:00
parent 56c72e1388
commit 1b1b80465c
5 changed files with 42 additions and 35 deletions

View File

@ -6,6 +6,9 @@ open import Relation.Nullary using (¬_; Dec; yes; no)
open import Language open import Language
open import Lattice open import Lattice
import Lattice.Bundles.FiniteValueMap
private module FixedHeightFiniteMap = Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice
data Sign : Set where data Sign : Set where
+ : Sign + : Sign
@ -36,15 +39,17 @@ module _ (prog : Program) where
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators. -- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
open import Lattice.Bundles.FiniteValueMap String SignLattice _≟ˢ_ renaming (finiteHeightLattice to finiteHeightLatticeᵛ-if-B-finite; FiniteHeightType to FiniteHeightTypeᵛ; _≈_ to _≈ᵛ_; ≈-dec to ≈ᵛ-dec-if-≈ᵍ-dec) open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
renaming
( finiteHeightLattice to finiteHeightLatticeᵛ
VariableSigns = FiniteHeightTypeᵛ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec ; FiniteMap to VariableSigns
finiteHeightLatticeᵛ = finiteHeightLatticeᵛ-if-B-finite finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec ; _≈_ to _≈ᵛ_
≈ᵛ-dec = ≈ᵛ-dec-if-≈ᵍ-dec finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec ; ≈-dec to ≈ᵛ-dec
)
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in. -- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
open import Lattice.Bundles.FiniteValueMap State VariableSigns _≟_ renaming (finiteHeightLattice to finiteHeightLatticeᵐ-if-B-finite; FiniteHeightType to FiniteHeightTypeᵐ) open FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
renaming
StateVariables = FiniteHeightTypeᵐ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec ( finiteHeightLattice to finiteHeightLatticeᵐ
finiteHeightLatticeᵐ = finiteHeightLatticeᵐ-if-B-finite finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec ; FiniteMap to StateVariables
)

View File

@ -8,7 +8,10 @@ open import Data.List using (List)
open import Data.Nat using () open import Data.Nat using ()
open import Utils using (Unique) open import Utils using (Unique)
module _ (fhB : FiniteHeightLattice B) where module FromFiniteHeightLattice (fhB : FiniteHeightLattice B)
{ks : List A} (uks : Unique ks)
(≈₂-dec : Decidable (FiniteHeightLattice._≈_ fhB)) where
open Lattice.FiniteHeightLattice fhB using () renaming open Lattice.FiniteHeightLattice fhB using () renaming
( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_ ( _≈_ to _≈₂_; _⊔_ to _⊔₂_; _⊓_ to _⊓₂_
; height to height₂ ; height to height₂
@ -16,13 +19,12 @@ module _ (fhB : FiniteHeightLattice B) where
; fixedHeight to fixedHeight₂ ; fixedHeight to fixedHeight₂
) )
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) where import Lattice.FiniteMap
import Lattice.FiniteValueMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂ as FVM module FM = Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂
open FM.WithKeys ks public
FiniteHeightType = FVM.FiniteMap ks import Lattice.FiniteValueMap
module FVM = Lattice.FiniteValueMap A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A isLattice₂
finiteHeightLattice = FVM.IterProdIsomorphism.finiteHeightLattice uks ≈₂-dec height₂ fixedHeight₂ open FVM.IterProdIsomorphism.WithUniqueKeysAndFixedHeight uks ≈₂-dec height₂ fixedHeight₂ public
open FiniteHeightLattice finiteHeightLattice public
≈-dec = FVM.≈-dec ks ≈₂-dec
≈-dec = ≈₂-dec⇒≈-dec ≈₂-dec

View File

@ -45,15 +45,15 @@ open import Relation.Nullary using (¬_; Dec; yes; no)
open import Utils using (Pairwise; _∷_; []) open import Utils using (Pairwise; _∷_; [])
open import Data.Empty using (⊥-elim) open import Data.Empty using (⊥-elim)
module _ (ks : List A) where module WithKeys (ks : List A) where
FiniteMap : Set (a ⊔ℓ b) FiniteMap : Set (a ⊔ℓ b)
FiniteMap = Σ Map (λ m Map.keys m ks) FiniteMap = Σ Map (λ m Map.keys m ks)
_≈_ : FiniteMap FiniteMap Set (a ⊔ℓ b) _≈_ : FiniteMap FiniteMap Set (a ⊔ℓ b)
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂ _≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
-dec : IsDecidable _≈₂_ IsDecidable _≈_ ₂-dec⇒≈-dec : IsDecidable _≈₂_ IsDecidable _≈_
≈-dec ≈₂-dec fm₁ fm₂ = ≈ᵐ-dec ≈₂-dec (proj₁ fm₁) (proj₁ fm₂) ₂-dec⇒≈-dec ≈₂-dec fm₁ fm₂ = ≈ᵐ-dec ≈₂-dec (proj₁ fm₁) (proj₁ fm₂)
_⊔_ : FiniteMap FiniteMap FiniteMap _⊔_ : FiniteMap FiniteMap FiniteMap
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = _⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) =
@ -174,3 +174,5 @@ module _ (ks : List A) where
... | no k∉km₁ | no k∉km₂ = m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ ks'' m₁≼m₂ ... | no k∉km₁ | no k∉km₂ = m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ ks'' m₁≼m₂
... | yes k∈km₁ | no k∉km₂ = ⊥-elim (∈k-exclusive fm₁ fm₂ (k∈km₁ , k∉km₂)) ... | yes k∈km₁ | no k∉km₂ = ⊥-elim (∈k-exclusive fm₁ fm₂ (k∈km₁ , k∉km₂))
... | no k∉km₁ | yes k∈km₂ = ⊥-elim (∈k-exclusive fm₂ fm₁ (k∈km₂ , k∉km₁)) ... | no k∉km₁ | yes k∈km₂ = ⊥-elim (∈k-exclusive fm₂ fm₁ (k∈km₂ , k∉km₁))
open WithKeys public

View File

@ -399,7 +399,7 @@ module IterProdIsomorphism where
in in
(v' , (v₁⊔v₂≈v' , there v'∈fm')) (v' , (v₁⊔v₂≈v' , there v'∈fm'))
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) (h₂ : ) (fhB : FixedHeight₂ h₂) where module WithUniqueKeysAndFixedHeight {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) (h₂ : ) (fhB : FixedHeight₂ h₂) where
import Isomorphism import Isomorphism
open Isomorphism.TransportFiniteHeight open Isomorphism.TransportFiniteHeight
(IP.isFiniteHeightLattice (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ) (isLattice ks) (IP.isFiniteHeightLattice (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ) (isLattice ks)

View File

@ -20,23 +20,22 @@ xyzw-Unique : Unique xyzw
xyzw-Unique = push ((λ ()) (λ ()) (λ ()) []) (push ((λ ()) (λ ()) []) (push ((λ ()) []) (push [] empty))) xyzw-Unique = push ((λ ()) (λ ()) (λ ()) []) (push ((λ ()) (λ ()) []) (push ((λ ()) []) (push [] empty)))
open import Lattice using (IsFiniteHeightLattice; FiniteHeightLattice; Monotonic) open import Lattice using (IsFiniteHeightLattice; FiniteHeightLattice; Monotonic)
open import Lattice.AboveBelow _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵘ_ as AB using () renaming (≈-dec to ≈ᵘ-dec) open import Lattice.AboveBelow _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵘ_ as AB using () renaming (≈-dec to ≈ᵘ-dec)
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵘ) open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵘ)
open import Lattice.Bundles.FiniteValueMap String AB.AboveBelow _≟ˢ_ using () renaming (finiteHeightLattice to finiteHeightLatticeᵐ; FiniteHeightType to FiniteHeightTypeᵐ; ≈-dec to ≈-dec)
fhlᵘ = finiteHeightLatticeᵘ (Data.Unit.tt)
FiniteHeightMap = FiniteHeightTypeᵐ fhlᵘ xyzw-Unique ≈ᵘ-dec
showAboveBelow : AB.AboveBelow String showAboveBelow : AB.AboveBelow String
showAboveBelow AB. = "" showAboveBelow AB. = ""
showAboveBelow AB.⊥ = "" showAboveBelow AB.⊥ = ""
showAboveBelow (AB.[_] tt) = "()" showAboveBelow (AB.[_] tt) = "()"
showMap : FiniteHeightMap String fhlᵘ = finiteHeightLatticeᵘ (Data.Unit.tt)
showMap ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest x ++ "" ++ showAboveBelow y ++ ", " ++ rest) "" kvs ++ "}"
fhlⁱᵖ = finiteHeightLatticeᵐ fhlᵘ xyzw-Unique ≈ᵘ-dec import Lattice.Bundles.FiniteValueMap
open Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice String AB.AboveBelow _≟ˢ_ fhlᵘ xyzw-Unique ≈ᵘ-dec using (FiniteMap; ≈-dec) renaming (finiteHeightLattice to fhlⁱᵖ)
showMap : FiniteMap String
showMap ((kvs , _) , _) = "{" ++ foldr (λ (x , y) rest x ++ "" ++ showAboveBelow y ++ ", " ++ rest) "" kvs ++ "}"
open FiniteHeightLattice fhlⁱᵖ using (_≈_; _⊔_; _⊓_; ⊔-idemp; _≼_; ≈-⊔-cong; ≈-refl; ≈-trans; ≈-sym; ⊔-assoc; ⊔-comm; ⊔-Monotonicˡ) open FiniteHeightLattice fhlⁱᵖ using (_≈_; _⊔_; _⊓_; ⊔-idemp; _≼_; ≈-⊔-cong; ≈-refl; ≈-trans; ≈-sym; ⊔-assoc; ⊔-comm; ⊔-Monotonicˡ)
open import Relation.Binary.Reasoning.Base.Single _≈_ (λ {m} ≈-refl {m}) (λ {m₁} {m₂} {m₃} ≈-trans {m₁} {m₂} {m₃}) -- why am I having to eta-expand here? open import Relation.Binary.Reasoning.Base.Single _≈_ (λ {m} ≈-refl {m}) (λ {m₁} {m₂} {m₃} ≈-trans {m₁} {m₂} {m₃}) -- why am I having to eta-expand here?
@ -44,16 +43,15 @@ open import Relation.Binary.Reasoning.Base.Single _≈_ (λ {m} → ≈-refl {m}
smallestMap = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight fhlⁱᵖ))) smallestMap = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight fhlⁱᵖ)))
largestMap = proj₂ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight fhlⁱᵖ))) largestMap = proj₂ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight fhlⁱᵖ)))
dumb : FiniteHeightMap dumb : FiniteMap
dumb = ((("x" , AB.[_] tt) ("y" , AB.⊥) ("z" , AB.⊥) ("w" , AB.⊥) [] , xyzw-Unique) , refl) dumb = ((("x" , AB.[_] tt) ("y" , AB.⊥) ("z" , AB.⊥) ("w" , AB.⊥) [] , xyzw-Unique) , refl)
dumbFunction : FiniteHeightMap FiniteHeightMap dumbFunction : FiniteMap FiniteMap
dumbFunction = _⊔_ dumb dumbFunction = _⊔_ dumb
dumbFunction-Monotonic : Monotonic _≼_ _≼_ dumbFunction dumbFunction-Monotonic : Monotonic _≼_ _≼_ dumbFunction
dumbFunction-Monotonic {m₁} {m₂} m₁≼m₂ = ⊔-Monotonicˡ dumb {m₁} {m₂} m₁≼m₂ dumbFunction-Monotonic {m₁} {m₂} m₁≼m₂ = ⊔-Monotonicˡ dumb {m₁} {m₂} m₁≼m₂
open import Fixedpoint {0} {FiniteMap} {8} {_≈_} {_⊔_} {_⊓_} ≈-dec (FiniteHeightLattice.isFiniteHeightLattice fhlⁱᵖ) dumbFunction (λ {m₁} {m₂} m₁≼m₂ dumbFunction-Monotonic {m₁} {m₂} m₁≼m₂)
open import Fixedpoint {0} {FiniteHeightMap} {8} {_≈_} {_⊔_} {_⊓_} (≈-dec fhlᵘ xyzw-Unique ≈ᵘ-dec) (FiniteHeightLattice.isFiniteHeightLattice fhlⁱᵖ) dumbFunction (λ {m₁} {m₂} m₁≼m₂ dumbFunction-Monotonic {m₁} {m₂} m₁≼m₂)
main = run {0} (putStrLn (showMap aᶠ)) main = run {0} (putStrLn (showMap aᶠ))