Add an instance of Semilattice for Map.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
a4eaa6269f
commit
1b7a3f02eb
28
Lattice.agda
28
Lattice.agda
|
@ -216,6 +216,34 @@ module IsSemilatticeInstances where
|
||||||
; ⊔-idemp = ⊔-idemp
|
; ⊔-idemp = ⊔-idemp
|
||||||
}
|
}
|
||||||
|
|
||||||
|
module ForMap {a} {A B : Set a}
|
||||||
|
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||||
|
(_≈₂_ : B → B → Set a)
|
||||||
|
(_⊔₂_ : B → B → B)
|
||||||
|
(sB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||||
|
|
||||||
|
open import Map A B ≡-dec-A
|
||||||
|
|
||||||
|
private
|
||||||
|
infix 4 _≈_
|
||||||
|
infixl 20 _⊔_
|
||||||
|
|
||||||
|
_≈_ : Map → Map → Set a
|
||||||
|
_≈_ = lift (_≈₂_)
|
||||||
|
|
||||||
|
_⊔_ : Map → Map → Map
|
||||||
|
m₁ ⊔ m₂ = union _⊔₂_ m₁ m₂
|
||||||
|
|
||||||
|
module MapEquiv = IsEquivalenceInstances.ForMap A B ≡-dec-A _≈₂_ (IsSemilattice.≈-equiv sB)
|
||||||
|
|
||||||
|
MapIsUnionSemilattice : IsSemilattice Map _≈_ _⊔_
|
||||||
|
MapIsUnionSemilattice = record
|
||||||
|
{ ≈-equiv = MapEquiv.LiftEquivalence
|
||||||
|
; ⊔-assoc = union-assoc _≈₂_ (IsSemilattice.≈-refl sB) (IsSemilattice.≈-sym sB) _⊔₂_ (IsSemilattice.⊔-assoc sB)
|
||||||
|
; ⊔-comm = union-comm _≈₂_ (IsSemilattice.≈-refl sB) (IsSemilattice.≈-sym sB) _⊔₂_ (IsSemilattice.⊔-comm sB)
|
||||||
|
; ⊔-idemp = union-idemp _≈₂_ (IsSemilattice.≈-refl sB) (IsSemilattice.≈-sym sB) _⊔₂_ (IsSemilattice.⊔-idemp sB)
|
||||||
|
}
|
||||||
|
|
||||||
module IsLatticeInstances where
|
module IsLatticeInstances where
|
||||||
module ForNat where
|
module ForNat where
|
||||||
open Nat
|
open Nat
|
||||||
|
|
58
Map.agda
58
Map.agda
|
@ -342,14 +342,16 @@ module _ (_≈_ : B → B → Set b) where
|
||||||
lift : Map → Map → Set (a ⊔ b)
|
lift : Map → Map → Set (a ⊔ b)
|
||||||
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁
|
lift m₁ m₂ = subset m₁ m₂ × subset m₂ m₁
|
||||||
|
|
||||||
module _ (f : B → B → B) where
|
module _ (≈-refl : ∀ {b : B} → b ≈ b)
|
||||||
|
(≈-sym : ∀ {b₁ b₂ : B} → b₁ ≈ b₂ → b₂ ≈ b₁)
|
||||||
|
(f : B → B → B) where
|
||||||
module I = ImplInsert f
|
module I = ImplInsert f
|
||||||
|
|
||||||
module _ (f-idemp : ∀ (b : B) → f b b ≡ b) where
|
module _ (f-idemp : ∀ (b : B) → f b b ≈ b) where
|
||||||
union-idemp : ∀ (m : Map) → lift (_≡_) (union f m m) m
|
union-idemp : ∀ (m : Map) → lift (union f m m) m
|
||||||
union-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
|
union-idemp m@(l , u) = (mm-m-subset , m-mm-subset)
|
||||||
where
|
where
|
||||||
mm-m-subset : subset (_≡_) (union f m m) m
|
mm-m-subset : subset (union f m m) m
|
||||||
mm-m-subset k v k,v∈mm
|
mm-m-subset k v k,v∈mm
|
||||||
with Expr-Provenance f k ((` m) ∪ (` m)) (∈-cong proj₁ k,v∈mm)
|
with Expr-Provenance f k ((` m) ∪ (` m)) (∈-cong proj₁ k,v∈mm)
|
||||||
... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
|
... | (_ , (bothᵘ (single {v'} v'∈m) (single {v''} v''∈m) , v'v''∈mm))
|
||||||
|
@ -359,14 +361,14 @@ module _ (f : B → B → B) where
|
||||||
... | (_ , (in₁ (single {v'} v'∈m) k∉km , _)) = absurd (k∉km (∈-cong proj₁ v'∈m))
|
... | (_ , (in₁ (single {v'} v'∈m) k∉km , _)) = absurd (k∉km (∈-cong proj₁ v'∈m))
|
||||||
... | (_ , (in₂ k∉km (single {v''} v''∈m) , _)) = absurd (k∉km (∈-cong proj₁ v''∈m))
|
... | (_ , (in₂ k∉km (single {v''} v''∈m) , _)) = absurd (k∉km (∈-cong proj₁ v''∈m))
|
||||||
|
|
||||||
m-mm-subset : subset (_≡_) m (union f m m)
|
m-mm-subset : subset m (union f m m)
|
||||||
m-mm-subset k v k,v∈m = (f v v , (sym (f-idemp v) , I.union-combines u u k,v∈m k,v∈m))
|
m-mm-subset k v k,v∈m = (f v v , (≈-sym (f-idemp v) , I.union-combines u u k,v∈m k,v∈m))
|
||||||
|
|
||||||
module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≡ f b₂ b₁) where
|
module _ (f-comm : ∀ (b₁ b₂ : B) → f b₁ b₂ ≈ f b₂ b₁) where
|
||||||
union-comm : ∀ (m₁ m₂ : Map) → lift (_≡_) (union f m₁ m₂) (union f m₂ m₁)
|
union-comm : ∀ (m₁ m₂ : Map) → lift (union f m₁ m₂) (union f m₂ m₁)
|
||||||
union-comm m₁ m₂ = (union-comm-subset m₁ m₂ , union-comm-subset m₂ m₁)
|
union-comm m₁ m₂ = (union-comm-subset m₁ m₂ , union-comm-subset m₂ m₁)
|
||||||
where
|
where
|
||||||
union-comm-subset : ∀ (m₁ m₂ : Map) → subset (_≡_) (union f m₁ m₂) (union f m₂ m₁)
|
union-comm-subset : ∀ (m₁ m₂ : Map) → subset (union f m₁ m₂) (union f m₂ m₁)
|
||||||
union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
union-comm-subset m₁@(l₁ , u₁) m₂@(l₂ , u₂) k v k,v∈m₁m₂
|
||||||
with Expr-Provenance f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
|
with Expr-Provenance f k ((` m₁) ∪ (` m₂)) (∈-cong proj₁ k,v∈m₁m₂)
|
||||||
... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
|
... | (_ , (bothᵘ {v₁} {v₂} (single v₁∈m₁) (single v₂∈m₂) , v₁v₂∈m₁m₂))
|
||||||
|
@ -374,63 +376,63 @@ module _ (f : B → B → B) where
|
||||||
(f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
(f v₂ v₁ , (f-comm v₁ v₂ , I.union-combines u₂ u₁ v₂∈m₂ v₁∈m₁))
|
||||||
... | (_ , (in₁ {v₁} (single v₁∈m₁) k∉km₂ , v₁∈m₁m₂))
|
... | (_ , (in₁ {v₁} (single v₁∈m₁) k∉km₂ , v₁∈m₁m₂))
|
||||||
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁∈m₁m₂ =
|
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₁∈m₁m₂ =
|
||||||
(v₁ , (refl , I.union-preserves-∈₂ k∉km₂ v₁∈m₁))
|
(v₁ , (≈-refl , I.union-preserves-∈₂ k∉km₂ v₁∈m₁))
|
||||||
... | (_ , (in₂ {v₂} k∉km₁ (single v₂∈m₂) , v₂∈m₁m₂))
|
... | (_ , (in₂ {v₂} k∉km₁ (single v₂∈m₂) , v₂∈m₁m₂))
|
||||||
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₂∈m₁m₂ =
|
rewrite Map-functional {m = union f m₁ m₂} k,v∈m₁m₂ v₂∈m₁m₂ =
|
||||||
(v₂ , (refl , I.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁))
|
(v₂ , (≈-refl , I.union-preserves-∈₁ u₂ v₂∈m₂ k∉km₁))
|
||||||
|
|
||||||
module _ (f-assoc : ∀ (b₁ b₂ b₃ : B) → f (f b₁ b₂) b₃ ≡ f b₁ (f b₂ b₃)) where
|
module _ (f-assoc : ∀ (b₁ b₂ b₃ : B) → f (f b₁ b₂) b₃ ≈ f b₁ (f b₂ b₃)) where
|
||||||
union-assoc : ∀ (m₁ m₂ m₃ : Map) → lift (_≡_) (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
union-assoc : ∀ (m₁ m₂ m₃ : Map) → lift (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
||||||
union-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (union-assoc₁ , union-assoc₂)
|
union-assoc m₁@(l₁ , u₁) m₂@(l₂ , u₂) m₃@(l₃ , u₃) = (union-assoc₁ , union-assoc₂)
|
||||||
where
|
where
|
||||||
union-assoc₁ : subset (_≡_) (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
union-assoc₁ : subset (union f (union f m₁ m₂) m₃) (union f m₁ (union f m₂ m₃))
|
||||||
union-assoc₁ k v k,v∈m₁₂m₃
|
union-assoc₁ k v k,v∈m₁₂m₃
|
||||||
with Expr-Provenance f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
|
with Expr-Provenance f k (((` m₁) ∪ (` m₂)) ∪ (` m₃)) (∈-cong proj₁ k,v∈m₁₂m₃)
|
||||||
... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃))
|
... | (_ , (in₂ k∉ke₁₂ (single {v₃} v₃∈e₃) , v₃∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₃∈m₁₂m₃ =
|
||||||
let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
|
let (k∉ke₁ , k∉ke₂) = I.∉-union-∉-either {l₁ = l₁} {l₂ = l₂} k∉ke₁₂
|
||||||
in (v₃ , (refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
in (v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
||||||
... | (_ , (in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ , v₂∈m₁₂m₃))
|
... | (_ , (in₁ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) k∉ke₃ , v₂∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂∈m₁₂m₃ =
|
||||||
(v₂ , (refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
(v₂ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
||||||
... | (_ , (bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₂v₃∈m₁₂m₃))
|
... | (_ , (bothᵘ (in₂ k∉ke₁ (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₂v₃∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂v₃∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₂v₃∈m₁₂m₃ =
|
||||||
(f v₂ v₃ , (refl , I.union-preserves-∈₂ k∉ke₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
(f v₂ v₃ , (≈-refl , I.union-preserves-∈₂ k∉ke₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||||||
... | (_ , (in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ , v₁∈m₁₂m₃))
|
... | (_ , (in₁ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) k∉ke₃ , v₁∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁∈m₁₂m₃ =
|
||||||
(v₁ , (refl , I.union-preserves-∈₁ u₁ v₁∈e₁ (I.union-preserves-∉ k∉ke₂ k∉ke₃)))
|
(v₁ , (≈-refl , I.union-preserves-∈₁ u₁ v₁∈e₁ (I.union-preserves-∉ k∉ke₂ k∉ke₃)))
|
||||||
... | (_ , (bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) , v₁v₃∈m₁₂m₃))
|
... | (_ , (bothᵘ (in₁ (single {v₁} v₁∈e₁) k∉ke₂) (single {v₃} v₃∈e₃) , v₁v₃∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₃∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₃∈m₁₂m₃ =
|
||||||
(f v₁ v₃ , (refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
(f v₁ v₃ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₂ k∉ke₂ v₃∈e₃)))
|
||||||
... | (_ , (in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃), v₁v₂∈m₁₂m₃)
|
... | (_ , (in₁ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) k∉ke₃), v₁v₂∈m₁₂m₃)
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂∈m₁₂m₃ =
|
||||||
(f v₁ v₂ , (refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
(f v₁ v₂ , (≈-refl , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-preserves-∈₁ u₂ v₂∈e₂ k∉ke₃)))
|
||||||
... | (_ , (bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃))
|
... | (_ , (bothᵘ (bothᵘ (single {v₁} v₁∈e₁) (single {v₂} v₂∈e₂)) (single {v₃} v₃∈e₃) , v₁v₂v₃∈m₁₂m₃))
|
||||||
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ =
|
rewrite Map-functional {m = union f (union f m₁ m₂) m₃} k,v∈m₁₂m₃ v₁v₂v₃∈m₁₂m₃ =
|
||||||
(f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
(f v₁ (f v₂ v₃) , (f-assoc v₁ v₂ v₃ , I.union-combines u₁ (I.union-preserves-Unique l₂ l₃ u₃) v₁∈e₁ (I.union-combines u₂ u₃ v₂∈e₂ v₃∈e₃)))
|
||||||
|
|
||||||
union-assoc₂ : subset (_≡_) (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃)
|
union-assoc₂ : subset (union f m₁ (union f m₂ m₃)) (union f (union f m₁ m₂) m₃)
|
||||||
union-assoc₂ k v k,v∈m₁m₂₃
|
union-assoc₂ k v k,v∈m₁m₂₃
|
||||||
with Expr-Provenance f k ((` m₁) ∪ ((` m₂) ∪ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
|
with Expr-Provenance f k ((` m₁) ∪ ((` m₂) ∪ (` m₃))) (∈-cong proj₁ k,v∈m₁m₂₃)
|
||||||
... | (_ , (in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃))
|
... | (_ , (in₂ k∉ke₁ (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₃∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₃∈m₁m₂₃ =
|
||||||
(v₃ , (refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
|
(v₃ , (≈-refl , I.union-preserves-∈₂ (I.union-preserves-∉ k∉ke₁ k∉ke₂) v₃∈e₃))
|
||||||
... | (_ , (in₂ k∉ke₁ (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₂∈m₁m₂₃))
|
... | (_ , (in₂ k∉ke₁ (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₂∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂∈m₁m₂₃ =
|
||||||
(v₂ , (refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃))
|
(v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) k∉ke₃))
|
||||||
... | (_ , (in₂ k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₂v₃∈m₁m₂₃))
|
... | (_ , (in₂ k∉ke₁ (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₂v₃∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂v₃∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₂v₃∈m₁m₂₃ =
|
||||||
(f v₂ v₃ , (refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃))
|
(f v₂ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₂ k∉ke₁ v₂∈e₂) v₃∈e₃))
|
||||||
... | (_ , (in₁ (single {v₁} v₁∈e₁) k∉ke₂₃ , v₁∈m₁m₂₃))
|
... | (_ , (in₁ (single {v₁} v₁∈e₁) k∉ke₂₃ , v₁∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁∈m₁m₂₃ =
|
||||||
let (k∉ke₂ , k∉ke₃) = I.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃
|
let (k∉ke₂ , k∉ke₃) = I.∉-union-∉-either {l₁ = l₂} {l₂ = l₃} k∉ke₂₃
|
||||||
in (v₁ , (refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃))
|
in (v₁ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) k∉ke₃))
|
||||||
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₁v₃∈m₁m₂₃))
|
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₂ k∉ke₂ (single {v₃} v₃∈e₃)) , v₁v₃∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₃∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₃∈m₁m₂₃ =
|
||||||
(f v₁ v₃ , (refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃))
|
(f v₁ v₃ , (≈-refl , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-preserves-∈₁ u₁ v₁∈e₁ k∉ke₂) v₃∈e₃))
|
||||||
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₁v₂∈m₁m₂₃))
|
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (in₁ (single {v₂} v₂∈e₂) k∉ke₃) , v₁v₂∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂∈m₁m₂₃ =
|
||||||
(f v₁ v₂ , (refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃))
|
(f v₁ v₂ , (≈-refl , I.union-preserves-∈₁ (I.union-preserves-Unique l₁ l₂ u₂) (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) k∉ke₃))
|
||||||
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃))
|
... | (_ , (bothᵘ (single {v₁} v₁∈e₁) (bothᵘ (single {v₂} v₂∈e₂) (single {v₃} v₃∈e₃)) , v₁v₂v₃∈m₁m₂₃))
|
||||||
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ =
|
rewrite Map-functional {m = union f m₁ (union f m₂ m₃)} k,v∈m₁m₂₃ v₁v₂v₃∈m₁m₂₃ =
|
||||||
(f (f v₁ v₂) v₃ , (sym (f-assoc v₁ v₂ v₃) , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
|
(f (f v₁ v₂) v₃ , (≈-sym (f-assoc v₁ v₂ v₃) , I.union-combines (I.union-preserves-Unique l₁ l₂ u₂) u₃ (I.union-combines u₁ u₂ v₁∈e₁ v₂∈e₂) v₃∈e₃))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user