Expose only a 'public' "keys" function from Map
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
a55c786a51
commit
1b8c88b1a2
|
@ -28,6 +28,7 @@ open IsLattice lB using () renaming
|
||||||
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
||||||
)
|
)
|
||||||
|
|
||||||
|
module ImplKeys where
|
||||||
keys : List (A × B) → List A
|
keys : List (A × B) → List A
|
||||||
keys = map proj₁
|
keys = map proj₁
|
||||||
|
|
||||||
|
@ -57,6 +58,7 @@ All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
||||||
|
|
||||||
private module _ where
|
private module _ where
|
||||||
open MemProp using (_∈_)
|
open MemProp using (_∈_)
|
||||||
|
open ImplKeys
|
||||||
|
|
||||||
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
unique-not-in : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||||
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
¬ (All (λ k' → ¬ k ≡ k') (keys l) × (k , v) ∈ l)
|
||||||
|
@ -108,6 +110,7 @@ private module ImplRelation where
|
||||||
private module ImplInsert (f : B → B → B) where
|
private module ImplInsert (f : B → B → B) where
|
||||||
open import Data.List using (map)
|
open import Data.List using (map)
|
||||||
open MemProp using (_∈_)
|
open MemProp using (_∈_)
|
||||||
|
open ImplKeys
|
||||||
|
|
||||||
private
|
private
|
||||||
_∈k_ : A → List (A × B) → Set a
|
_∈k_ : A → List (A × B) → Set a
|
||||||
|
@ -448,13 +451,16 @@ private module ImplInsert (f : B → B → B) where
|
||||||
|
|
||||||
|
|
||||||
Map : Set (a ⊔ℓ b)
|
Map : Set (a ⊔ℓ b)
|
||||||
Map = Σ (List (A × B)) (λ l → Unique (keys l))
|
Map = Σ (List (A × B)) (λ l → Unique (ImplKeys.keys l))
|
||||||
|
|
||||||
|
keys : Map → List A
|
||||||
|
keys (kvs , _) = ImplKeys.keys kvs
|
||||||
|
|
||||||
_∈_ : (A × B) → Map → Set (a ⊔ℓ b)
|
_∈_ : (A × B) → Map → Set (a ⊔ℓ b)
|
||||||
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
_∈_ p (kvs , _) = MemProp._∈_ p kvs
|
||||||
|
|
||||||
_∈k_ : A → Map → Set a
|
_∈k_ : A → Map → Set a
|
||||||
_∈k_ k (kvs , _) = MemProp._∈_ k (keys kvs)
|
_∈k_ k m = MemProp._∈_ k (keys m)
|
||||||
|
|
||||||
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
Map-functional : ∀ {k : A} {v v' : B} {m : Map} → (k , v) ∈ m → (k , v') ∈ m → v ≡ v'
|
||||||
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
Map-functional {m = (l , ul)} k,v∈m k,v'∈m = ListAB-functional ul k,v∈m k,v'∈m
|
||||||
|
|
Loading…
Reference in New Issue
Block a user