Require bottom element to actually be bottom; finish proof
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -260,6 +260,12 @@ record IsFiniteHeightLattice {a} (A : Set a)
|
||||
|
||||
open MyChain.Height fixedHeight using (⊥; ⊤) public
|
||||
|
||||
Known-⊥ : Set a
|
||||
Known-⊥ = ∀ (a : A) → ⊥ ≼ a
|
||||
|
||||
Known-⊤ : Set a
|
||||
Known-⊤ = ∀ (a : A) → a ≼ ⊤
|
||||
|
||||
-- If the equality is decidable, we can prove that the top and bottom
|
||||
-- elements of the chain are least and greatest elements of the lattice
|
||||
module _ {{≈-Decidable : IsDecidable _≈_}} where
|
||||
@@ -267,7 +273,7 @@ record IsFiniteHeightLattice {a} (A : Set a)
|
||||
|
||||
open MyChain.Height fixedHeight using (bounded; longestChain)
|
||||
|
||||
⊥≼ : ∀ (a : A) → ⊥ ≼ a
|
||||
⊥≼ : Known-⊥
|
||||
⊥≼ a with ≈-dec a ⊥
|
||||
... | yes a≈⊥ = ≼-cong a≈⊥ ≈-refl (≼-refl a)
|
||||
... | no a̷≈⊥ with ≈-dec ⊥ (a ⊓ ⊥)
|
||||
|
||||
Reference in New Issue
Block a user