Factor the Semilattice instances for Nat into their own module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
c9b514e9af
commit
1ee6682c1a
31
Lattice.agda
31
Lattice.agda
|
@ -106,20 +106,17 @@ module PreorderInstances where
|
||||||
_≼_ : A × B → A × B → Set a
|
_≼_ : A × B → A × B → Set a
|
||||||
(a₁ , b₁) ≼ (a₂ , b₂) = Preorder._≼_ pA a₁ a₂ × Preorder._≼_ pB b₁ b₂
|
(a₁ , b₁) ≼ (a₂ , b₂) = Preorder._≼_ pA a₁ a₂ × Preorder._≼_ pB b₁ b₂
|
||||||
|
|
||||||
ispA = Preorder.isPreorder pA
|
|
||||||
ispB = Preorder.isPreorder pB
|
|
||||||
|
|
||||||
≼-refl : {p : A × B} → p ≼ p
|
≼-refl : {p : A × B} → p ≼ p
|
||||||
≼-refl {(a , b)} = (IsPreorder.≼-refl ispA {a}, IsPreorder.≼-refl ispB {b})
|
≼-refl {(a , b)} = (Preorder.≼-refl pA {a}, Preorder.≼-refl pB {b})
|
||||||
|
|
||||||
≼-trans : {p₁ p₂ p₃ : A × B} → p₁ ≼ p₂ → p₂ ≼ p₃ → p₁ ≼ p₃
|
≼-trans : {p₁ p₂ p₃ : A × B} → p₁ ≼ p₂ → p₂ ≼ p₃ → p₁ ≼ p₃
|
||||||
≼-trans (a₁≼a₂ , b₁≼b₂) (a₂≼a₃ , b₂≼b₃) =
|
≼-trans (a₁≼a₂ , b₁≼b₂) (a₂≼a₃ , b₂≼b₃) =
|
||||||
( IsPreorder.≼-trans ispA a₁≼a₂ a₂≼a₃
|
( Preorder.≼-trans pA a₁≼a₂ a₂≼a₃
|
||||||
, IsPreorder.≼-trans ispB b₁≼b₂ b₂≼b₃
|
, Preorder.≼-trans pB b₁≼b₂ b₂≼b₃
|
||||||
)
|
)
|
||||||
|
|
||||||
≼-antisym : {p₁ p₂ : A × B} → p₁ ≼ p₂ → p₂ ≼ p₁ → p₁ ≡ p₂
|
≼-antisym : {p₁ p₂ : A × B} → p₁ ≼ p₂ → p₂ ≼ p₁ → p₁ ≡ p₂
|
||||||
≼-antisym (a₁≼a₂ , b₁≼b₂) (a₂≼a₁ , b₂≼b₁) = cong₂ (_,_) (IsPreorder.≼-antisym ispA a₁≼a₂ a₂≼a₁) (IsPreorder.≼-antisym ispB b₁≼b₂ b₂≼b₁)
|
≼-antisym (a₁≼a₂ , b₁≼b₂) (a₂≼a₁ , b₂≼b₁) = cong₂ (_,_) (Preorder.≼-antisym pA a₁≼a₂ a₂≼a₁) (Preorder.≼-antisym pB b₁≼b₂ b₂≼b₁)
|
||||||
|
|
||||||
ProdPreorder : Preorder (A × B)
|
ProdPreorder : Preorder (A × B)
|
||||||
ProdPreorder = record
|
ProdPreorder = record
|
||||||
|
@ -131,8 +128,8 @@ module PreorderInstances where
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
module SemilatticeInstances where
|
||||||
private module NatInstances where
|
module ForNat where
|
||||||
open Nat
|
open Nat
|
||||||
open NatProps
|
open NatProps
|
||||||
open Eq
|
open Eq
|
||||||
|
@ -191,12 +188,20 @@ private module NatInstances where
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private module NatInstances where
|
||||||
|
open Nat
|
||||||
|
open NatProps
|
||||||
|
open Eq
|
||||||
|
open SemilatticeInstances.ForNat
|
||||||
|
open Data.Product
|
||||||
|
|
||||||
|
|
||||||
private
|
private
|
||||||
minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x
|
minmax-absorb : {x y : ℕ} → x ⊓ (x ⊔ y) ≡ x
|
||||||
minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x))
|
minmax-absorb {x} {y} = ≤-antisym x⊓x⊔y≤x (helper x⊓x≤x⊓x⊔y (⊓-idem x))
|
||||||
where
|
where
|
||||||
x⊓x⊔y≤x = min-bound₁ {x} {x ⊔ y} {x ⊓ (x ⊔ y)} refl
|
x⊓x⊔y≤x = proj₁ (Semilattice.⊔-bound NatMinSemilattice x (x ⊔ y) (x ⊓ (x ⊔ y)) refl)
|
||||||
x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (max-bound₁ {x} {y} {x ⊔ y} refl)
|
x⊓x≤x⊓x⊔y = ⊓-mono-≤ {x} {x} ≤-refl (proj₁ (Semilattice.⊔-bound NatMaxSemilattice x y (x ⊔ y) refl))
|
||||||
|
|
||||||
-- >:(
|
-- >:(
|
||||||
helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y)
|
helper : x ⊓ x ≤ x ⊓ (x ⊔ y) → x ⊓ x ≡ x → x ≤ x ⊓ (x ⊔ y)
|
||||||
|
@ -205,8 +210,8 @@ private module NatInstances where
|
||||||
maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x
|
maxmin-absorb : {x y : ℕ} → x ⊔ (x ⊓ y) ≡ x
|
||||||
maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y
|
maxmin-absorb {x} {y} = ≤-antisym (helper x⊔x⊓y≤x⊔x (⊔-idem x)) x≤x⊔x⊓y
|
||||||
where
|
where
|
||||||
x≤x⊔x⊓y = max-bound₁ {x} {x ⊓ y} {x ⊔ (x ⊓ y)} refl
|
x≤x⊔x⊓y = proj₁ (Semilattice.⊔-bound NatMaxSemilattice x (x ⊓ y) (x ⊔ (x ⊓ y)) refl)
|
||||||
x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (min-bound₁ {x} {y} {x ⊓ y} refl)
|
x⊔x⊓y≤x⊔x = ⊔-mono-≤ {x} {x} ≤-refl (proj₁ (Semilattice.⊔-bound NatMinSemilattice x y (x ⊓ y) refl))
|
||||||
|
|
||||||
-- >:(
|
-- >:(
|
||||||
helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
|
helper : x ⊔ (x ⊓ y) ≤ x ⊔ x → x ⊔ x ≡ x → x ⊔ (x ⊓ y) ≤ x
|
||||||
|
|
Loading…
Reference in New Issue
Block a user