Add definitions about monotonicity to Lattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
ca375976b7
commit
236c92a5ef
12
Lattice.agda
12
Lattice.agda
@ -21,6 +21,18 @@ module _ {a b} {A : Set a} {B : Set b}
|
|||||||
Monotonic : (A → B) → Set (a ⊔ℓ b)
|
Monotonic : (A → B) → Set (a ⊔ℓ b)
|
||||||
Monotonic f = ∀ {a₁ a₂ : A} → a₁ ≼₁ a₂ → f a₁ ≼₂ f a₂
|
Monotonic f = ∀ {a₁ a₂ : A} → a₁ ≼₁ a₂ → f a₁ ≼₂ f a₂
|
||||||
|
|
||||||
|
Monotonicˡ : ∀ {c} {C : Set c} → (A → C → B) → Set (a ⊔ℓ b ⊔ℓ c)
|
||||||
|
Monotonicˡ f = ∀ c → Monotonic (λ a → f a c)
|
||||||
|
|
||||||
|
Monotonicʳ : ∀ {c} {C : Set c} → (C → A → B) → Set (a ⊔ℓ b ⊔ℓ c)
|
||||||
|
Monotonicʳ f = ∀ a → Monotonic (f a)
|
||||||
|
|
||||||
|
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
|
||||||
|
(_≼₁_ : A → A → Set a) (_≼₂_ : B → B → Set b) (_≼₃_ : C → C → Set c) where
|
||||||
|
|
||||||
|
Monotonic₂ : (A → B → C) → Set (a ⊔ℓ b ⊔ℓ c)
|
||||||
|
Monotonic₂ f = Monotonicˡ _≼₁_ _≼₃_ f × Monotonicʳ _≼₂_ _≼₃_ f
|
||||||
|
|
||||||
record IsSemilattice {a} (A : Set a)
|
record IsSemilattice {a} (A : Set a)
|
||||||
(_≈_ : A → A → Set a)
|
(_≈_ : A → A → Set a)
|
||||||
(_⊔_ : A → A → A) : Set a where
|
(_⊔_ : A → A → A) : Set a where
|
||||||
|
Loading…
Reference in New Issue
Block a user