Add definitions about monotonicity to Lattice

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2025-01-05 19:36:42 -08:00
parent ca375976b7
commit 236c92a5ef

View File

@ -21,6 +21,18 @@ module _ {a b} {A : Set a} {B : Set b}
Monotonic : (A B) Set (a ⊔ℓ b) Monotonic : (A B) Set (a ⊔ℓ b)
Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂ Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂
Monotonicˡ : {c} {C : Set c} (A C B) Set (a ⊔ℓ b ⊔ℓ c)
Monotonicˡ f = c Monotonic (λ a f a c)
Monotonicʳ : {c} {C : Set c} (C A B) Set (a ⊔ℓ b ⊔ℓ c)
Monotonicʳ f = a Monotonic (f a)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c}
(_≼₁_ : A A Set a) (_≼₂_ : B B Set b) (_≼₃_ : C C Set c) where
Monotonic₂ : (A B C) Set (a ⊔ℓ b ⊔ℓ c)
Monotonic₂ f = Monotonicˡ _≼₁_ _≼₃_ f × Monotonicʳ _≼₂_ _≼₃_ f
record IsSemilattice {a} (A : Set a) record IsSemilattice {a} (A : Set a)
(_≈_ : A A Set a) (_≈_ : A A Set a)
(_⊔_ : A A A) : Set a where (_⊔_ : A A A) : Set a where