Remove unnecessary -right prefix in theorem name.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-07-30 13:21:03 -07:00
parent b066db9829
commit 26db4cc86c

View File

@ -152,35 +152,35 @@ private module ImplInsert (f : B → B → B) where
merge-preserves-Unique ((k₁ , v₁) xs₁) l₂ u₂ =
insert-preserves-Unique (merge-preserves-Unique xs₁ l₂ u₂)
insert-preserves-∈-right : {k k' : A} {v v' : B} {l : List (A × B)}
insert-preserves-∈ : {k k' : A} {v v' : B} {l : List (A × B)}
¬ k k' (k , v) l (k , v) insert k' v' l
insert-preserves-∈-right {k} {k'} {l = x xs} k≢k' (here k,v=x)
insert-preserves-∈ {k} {k'} {l = x xs} k≢k' (here k,v=x)
rewrite sym k,v=x with ≡-dec-A k' k
... | yes k'≡k = absurd (k≢k' (sym k'≡k))
... | no _ = here refl
insert-preserves-∈-right {k} {k'} {l = (k'' , _) xs} k≢k' (there k,v∈xs)
insert-preserves-∈ {k} {k'} {l = (k'' , _) xs} k≢k' (there k,v∈xs)
with ≡-dec-A k' k''
... | yes _ = there k,v∈xs
... | no _ = there (insert-preserves-∈-right k≢k' k,v∈xs)
... | no _ = there (insert-preserves-∈ k≢k' k,v∈xs)
insert-preserves-∈k-right : {k k' : A} {v' : B} {l : List (A × B)}
insert-preserves-∈k : {k k' : A} {v' : B} {l : List (A × B)}
¬ k k' k ∈k l k ∈k insert k' v' l
insert-preserves-∈k-right k≢k' k∈kl =
insert-preserves-∈k k≢k' k∈kl =
let (v , k,v∈l) = locate k∈kl
in ∈-cong proj₁ (insert-preserves-∈-right k≢k' k,v∈l)
in ∈-cong proj₁ (insert-preserves-∈ k≢k' k,v∈l)
insert-preserves-∉-right : {k k' : A} {v' : B} {l : List (A × B)}
insert-preserves-∉ : {k k' : A} {v' : B} {l : List (A × B)}
¬ k k' ¬ k ∈k l ¬ k ∈k insert k' v' l
insert-preserves-∉-right {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
insert-preserves-∉-right {l = []} k≢k' k∉kl (there ())
insert-preserves-∉-right {k} {k'} {v'} {(k'' , v'') xs} k≢k' k∉kl k∈kil
insert-preserves-∉ {l = []} k≢k' k∉kl (here k≡k') = k≢k' k≡k'
insert-preserves-∉ {l = []} k≢k' k∉kl (there ())
insert-preserves-∉ {k} {k'} {v'} {(k'' , v'') xs} k≢k' k∉kl k∈kil
with ≡-dec-A k k''
... | yes k≡k'' = k∉kl (here k≡k'')
... | no k≢k'' with ≡-dec-A k' k'' | k∈kil
... | yes k'≡k'' | here k≡k'' = k≢k'' k≡k''
... | yes k'≡k'' | there k∈kxs = k∉kl (there k∈kxs)
... | no k'≢k'' | here k≡k'' = k∉kl (here k≡k'')
... | no k'≢k'' | there k∈kxs = insert-preserves-∉-right k≢k'
... | no k'≢k'' | there k∈kxs = insert-preserves-∉ k≢k'
(λ k∈kxs k∉kl (there k∈kxs)) k∈kxs
merge-preserves-∉ : {k : A} {l₁ l₂ : List (A × B)}
@ -189,14 +189,14 @@ private module ImplInsert (f : B → B → B) where
merge-preserves-∉ {k} {(k' , v') xs₁} k∉kl₁ k∉kl₂
with ≡-dec-A k k'
... | yes k≡k' = absurd (k∉kl₁ (here k≡k'))
... | no k≢k' = insert-preserves-∉-right k≢k' (merge-preserves-∉ (λ k∈kxs₁ k∉kl₁ (there k∈kxs₁)) k∉kl₂)
... | no k≢k' = insert-preserves-∉ k≢k' (merge-preserves-∉ (λ k∈kxs₁ k∉kl₁ (there k∈kxs₁)) k∉kl₂)
merge-preserves-keys₁ : {k : A} {v : B} {l₁ l₂ : List (A × B)}
¬ k ∈k l₁ (k , v) l₂ (k , v) merge l₁ l₂
merge-preserves-keys₁ {l₁ = []} _ k,v∈l₂ = k,v∈l₂
merge-preserves-keys₁ {l₁ = (k' , v') xs₁} k∉kl₁ k,v∈l₂ =
let recursion = merge-preserves-keys₁ (λ k∈xs₁ k∉kl₁ (there k∈xs₁)) k,v∈l₂
in insert-preserves-∈-right (λ k≡k' k∉kl₁ (here k≡k')) recursion
in insert-preserves-∈ (λ k≡k' k∉kl₁ (here k≡k')) recursion
insert-fresh : {k : A} {v : B} {l : List (A × B)}
¬ k ∈k l (k , v) insert k v l
@ -209,7 +209,7 @@ private module ImplInsert (f : B → B → B) where
merge-preserves-keys₂ : {k : A} {v : B} {l₁ l₂ : List (A × B)}
Unique (keys l₁) (k , v) l₁ ¬ k ∈k l₂ (k , v) merge l₁ l₂
merge-preserves-keys₂ {k} {v} {(k' , v') xs₁} (push k'≢xs₁ uxs₁) (there k,v∈xs₁) k∉kl₂ =
insert-preserves-∈-right k≢k' k,v∈mxs₁l
insert-preserves-∈ k≢k' k,v∈mxs₁l
where
k,v∈mxs₁l = merge-preserves-keys₂ uxs₁ k,v∈xs₁ k∉kl₂
@ -240,7 +240,7 @@ private module ImplInsert (f : B → B → B) where
rewrite cong proj₁ (sym (k,v₁≡k',v)) rewrite cong proj₂ (sym (k,v₁≡k',v)) =
insert-combines (merge-preserves-Unique xs₁ l₂ ul₂) (merge-preserves-keys₁ (All¬-¬Any k'≢xs₁) k,v₂∈l₂)
merge-combines {k} {l₁ = (k' , v) xs₁} (push k'≢xs₁ uxs₁) ul₂ (there k,v₁∈xs₁) k,v₂∈l₂ =
insert-preserves-∈-right k≢k' (merge-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
insert-preserves-∈ k≢k' (merge-combines uxs₁ ul₂ k,v₁∈xs₁ k,v₂∈l₂)
where
k≢k' : ¬ k k'
k≢k' with ≡-dec-A k k'