Add typeclasses for (semi)lattices and order
This commit is contained in:
commit
27eeead350
39
Lattice.agda
Normal file
39
Lattice.agda
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
module Lattice where
|
||||||
|
|
||||||
|
open import Relation.Binary.PropositionalEquality
|
||||||
|
open import Relation.Binary.Definitions
|
||||||
|
open import Data.Nat using (ℕ; _≤_)
|
||||||
|
open import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym)
|
||||||
|
open import Agda.Primitive using (lsuc)
|
||||||
|
|
||||||
|
record Preorder {a} (A : Set a) : Set (lsuc a) where
|
||||||
|
field
|
||||||
|
_≼_ : A → A → Set a
|
||||||
|
|
||||||
|
≼-refl : Reflexive (_≼_)
|
||||||
|
≼-trans : Transitive (_≼_)
|
||||||
|
≼-antisym : Antisymmetric (_≡_) (_≼_)
|
||||||
|
|
||||||
|
record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
||||||
|
field
|
||||||
|
_⊔_ : A → A → A
|
||||||
|
|
||||||
|
⊔-assoc : (x : A) → (y : A) → (z : A) → x ⊔ (y ⊔ z) ≡ (x ⊔ y) ⊔ z
|
||||||
|
⊔-comm : (x : A) → (y : A) → x ⊔ y ≡ y ⊔ x
|
||||||
|
⊔-idemp : (x : A) → x ⊔ x ≡ x
|
||||||
|
|
||||||
|
record Lattice {a} (A : Set a) : Set (lsuc a) where
|
||||||
|
field
|
||||||
|
joinSemilattice : Semilattice A
|
||||||
|
meetSemilattice : Semilattice A
|
||||||
|
|
||||||
|
_⊔_ = Semilattice._⊔_ joinSemilattice
|
||||||
|
_⊓_ = Semilattice._⊔_ meetSemilattice
|
||||||
|
|
||||||
|
field
|
||||||
|
absorb-⊔-⊓ : (x : A) → (y : A) → x ⊔ (x ⊓ y) ≡ x
|
||||||
|
absorb-⊓-⊔ : (x : A) → (y : A) → x ⊓ (x ⊔ y) ≡ x
|
||||||
|
|
||||||
|
instance
|
||||||
|
NatPreorder : Preorder ℕ
|
||||||
|
NatPreorder = record { _≼_ = _≤_; ≼-refl = ≤-refl; ≼-trans = ≤-trans; ≼-antisym = ≤-antisym }
|
Loading…
Reference in New Issue
Block a user