Adjust 'to' to make it easier to reason about
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
671ffc82df
commit
2a06e6ae2d
@ -19,6 +19,8 @@ open import Data.List using (List; length; []; _∷_)
|
||||
open import Utils using (Unique; push; empty)
|
||||
open import Data.Product using (_,_)
|
||||
open import Data.List.Properties using (∷-injectiveʳ)
|
||||
open import Data.List.Relation.Unary.All using (All)
|
||||
open import Relation.Nullary using (¬_)
|
||||
|
||||
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public
|
||||
|
||||
@ -35,7 +37,15 @@ module IterProdIsomorphism where
|
||||
to {[]} _ ⊤ = (([] , empty) , refl)
|
||||
to {k ∷ ks'} (push k≢ks' uks') (v , rest)
|
||||
with to uks' rest
|
||||
... | ((kvs' , ukvs') , refl) = (((k , v) ∷ kvs' , push k≢ks' ukvs') , refl)
|
||||
... | ((kvs' , ukvs') , kvs'≡ks') =
|
||||
let
|
||||
-- This would be easier if we pattern matched on the equiality proof
|
||||
-- to get refl, but that makes it harder to reason about 'to' when
|
||||
-- the arguments are not known to be refl.
|
||||
k≢kvs' = subst (λ ks → All (λ k' → ¬ k ≡ k') ks) (sym kvs'≡ks') k≢ks'
|
||||
kvs≡ks = cong (k ∷_) kvs'≡ks'
|
||||
in
|
||||
(((k , v) ∷ kvs' , push k≢kvs' ukvs') , kvs≡ks)
|
||||
|
||||
|
||||
private
|
||||
|
Loading…
Reference in New Issue
Block a user