Adjust 'to' to make it easier to reason about

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-02-25 12:17:19 -08:00
parent 671ffc82df
commit 2a06e6ae2d

View File

@ -19,6 +19,8 @@ open import Data.List using (List; length; []; _∷_)
open import Utils using (Unique; push; empty) open import Utils using (Unique; push; empty)
open import Data.Product using (_,_) open import Data.Product using (_,_)
open import Data.List.Properties using (∷-injectiveʳ) open import Data.List.Properties using (∷-injectiveʳ)
open import Data.List.Relation.Unary.All using (All)
open import Relation.Nullary using (¬_)
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public
@ -35,7 +37,15 @@ module IterProdIsomorphism where
to {[]} _ = (([] , empty) , refl) to {[]} _ = (([] , empty) , refl)
to {k ks'} (push k≢ks' uks') (v , rest) to {k ks'} (push k≢ks' uks') (v , rest)
with to uks' rest with to uks' rest
... | ((kvs' , ukvs') , refl) = (((k , v) kvs' , push k≢ks' ukvs') , refl) ... | ((kvs' , ukvs') , kvs'≡ks') =
let
-- This would be easier if we pattern matched on the equiality proof
-- to get refl, but that makes it harder to reason about 'to' when
-- the arguments are not known to be refl.
k≢kvs' = subst (λ ks All (λ k' ¬ k k') ks) (sym kvs'≡ks') k≢ks'
kvs≡ks = cong (k ∷_) kvs'≡ks'
in
(((k , v) kvs' , push k≢kvs' ukvs') , kvs≡ks)
private private