Use concatenation to represent adding new nodes

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-04-12 22:04:43 -07:00
parent 3e2719d45f
commit 2db11dcfc7

View File

@ -6,7 +6,7 @@ open import Data.Integer using (; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
open import Data.String using (String) renaming (_≟_ to _≟ˢ_) open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast) open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast)
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ; lookup-cast₁) open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ; lookup-cast₁; cast-sym)
open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id) open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id)
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_) open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ) open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ)
@ -114,36 +114,27 @@ module Graphs where
field field
n : n :
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ +ⁿ n sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ +ⁿ n
g₁[]≡g₂[] : (idx : Graph.Index g₁) newNodes : Vec (List BasicStmt) n
lookup (Graph.nodes g₁) idx nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes
lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁} e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁}
e ∈ˡ (Graph.edges g₁) e ∈ˡ (Graph.edges g₁)
(↑ˡ-Edge e n) ∈ˡ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂)) (↑ˡ-Edge e n) ∈ˡ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃ ⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃} ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl g₁[]≡g₂[] e∈g₁⇒e∈g₂) (Mk-⊆ n₂ p₂@refl g₂[]≡g₃[] e∈g₂⇒e∈g₃) = record (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
{ n = n₁ +ⁿ n₂ (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂ rewrite cast-is-id refl ns₂
; g₁[]≡g₂[] = λ idx rewrite cast-is-id refl ns₃
begin with refl nsg₂≡nsg₁++newNodes₁
lookup ns₁ idx with refl nsg₃≡nsg₂++newNodes₂ =
≡⟨ g₁[]≡g₂[] _ record
lookup (cast p₁ ns₂) (idx ↑ˡ n₁) { n = n₁ +ⁿ n₂
≡⟨ lookup-cast₁ p₁ ns₂ _ ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
lookup ns₂ (castᶠ (sym p₁) (idx ↑ˡ n₁)) ; newNodes = newNodes₁ ++ newNodes₂
≡⟨ g₂[]≡g₃[] _ ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
lookup (cast p₂ ns₃) ((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂) ; e∈g₁⇒e∈g₂ = {!!}
≡⟨ lookup-cast₁ p₂ _ _ }
lookup ns₃ (castᶠ (sym p₂) (((castᶠ (sym p₁) (idx ↑ˡ n₁)) ↑ˡ n₂)))
≡⟨ cong (lookup ns₃) (↑ˡ-assoc (sym p₂) (sym p₁) (sym (+-assoc s₁ n₁ n₂)) idx)
lookup ns₃ (castᶠ (sym (+-assoc s₁ n₁ n₂)) (idx ↑ˡ (n₁ +ⁿ n₂)))
≡⟨ sym (lookup-cast₁ (+-assoc s₁ n₁ n₂) _ _)
lookup (cast (+-assoc s₁ n₁ n₂) ns₃) (idx ↑ˡ (n₁ +ⁿ n₂))
; e∈g₁⇒e∈g₂ = {!!} -- λ e∈g₁ → e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)
}
where where
↑ˡ-assoc : {s₁ s₂ s₃ n₁ n₂ : } ↑ˡ-assoc : {s₁ s₂ s₃ n₁ n₂ : }
(p : s₂ +ⁿ n₂ s₃) (q : s₁ +ⁿ n₁ s₂) (p : s₂ +ⁿ n₂ s₃) (q : s₁ +ⁿ n₁ s₂)
@ -160,7 +151,7 @@ module Graphs where
instance instance
IndexRelaxable : Relaxable Graph.Index IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _) idx idx ↑ˡ n } { relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n }
} }
EdgeRelaxable : Relaxable Graph.Edge EdgeRelaxable : Relaxable Graph.Edge
@ -185,9 +176,9 @@ module Graphs where
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁) relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ] g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl g₁[]≡g₂[] _) idx = relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
trans (g₁[]≡g₂[] idx) (cong (λ vec lookup vec (idx ↑ˡ n)) rewrite cast-is-id refl (Graph.nodes g₂)
(cast-is-id refl (Graph.nodes g₂))) with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
MonotonicGraphFunction : (Graph Set) Set MonotonicGraphFunction : (Graph Set) Set
MonotonicGraphFunction T = (g₁ : Graph) Σ Graph (λ g₂ T g₂ × g₁ g₂) MonotonicGraphFunction T = (g₁ : Graph) Σ Graph (λ g₂ T g₂ × g₁ g₂)
@ -228,8 +219,9 @@ module Graphs where
, record , record
{ n = 1 { n = 1
; sg₂≡sg₁+n = refl ; sg₂≡sg₁+n = refl
; g₁[]≡g₂[] = {!!} -- λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ []))))) ; newNodes = (bss [])
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e' ↑ˡ-Edge e' 1) e∈g₁ ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
} }
) )
) )
@ -244,14 +236,8 @@ module Graphs where
, record , record
{ n = 0 { n = 0
; sg₂≡sg₁+n = +-comm 0 s ; sg₂≡sg₁+n = +-comm 0 s
; g₁[]≡g₂[] = λ idx ; newNodes = []
begin ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
lookup ns idx
≡⟨ cong (lookup ns) (↑ˡ-identityʳ (sym (+-comm 0 s)) idx)
lookup ns (castᶠ (sym (+-comm 0 s)) (idx ↑ˡ 0))
≡⟨ sym (lookup-cast₁ (+-comm 0 s) _ _)
lookup (cast (+-comm 0 s) ns) (idx ↑ˡ 0)
; e∈g₁⇒e∈g₂ = {!!} ; e∈g₁⇒e∈g₂ = {!!}
} }
) )