Make 'MonotonicPredicate' into another typeclass
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									7571cb7451
								
							
						
					
					
						commit
						2f91ca113e
					
				@ -93,9 +93,8 @@ Both P Q = (λ { s (t₁ , t₂) → (P s t₁ × Q s t₂) })
 | 
			
		||||
-- states'. We call such predicates monotonic as well, since they respect the
 | 
			
		||||
-- ordering relation.
 | 
			
		||||
 | 
			
		||||
MonotonicPredicate : ∀ {T : S → Set s} {{ _ : Relaxable T }} →
 | 
			
		||||
                     DependentPredicate T → Set s
 | 
			
		||||
MonotonicPredicate {T} {{r}} P = ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
 | 
			
		||||
record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where
 | 
			
		||||
    field relaxPredicate : ∀ (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ ≼ s₂) →
 | 
			
		||||
                           P s₁ t₁ → P s₂ (Relaxable.relax r s₁≼s₂ t₁)
 | 
			
		||||
 | 
			
		||||
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
 | 
			
		||||
@ -106,11 +105,12 @@ always P m = ∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t
 | 
			
		||||
 | 
			
		||||
⟨⊗⟩-reason : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
 | 
			
		||||
             {P : DependentPredicate T₁} {Q : DependentPredicate T₂}
 | 
			
		||||
             {P-Mono : MonotonicPredicate P}
 | 
			
		||||
             {{P-Mono : MonotonicPredicate P}}
 | 
			
		||||
             {m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
 | 
			
		||||
             always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
 | 
			
		||||
⟨⊗⟩-reason {P-Mono = P-Mono} {m₁ = m₁} {m₂ = m₂} aP aQ s
 | 
			
		||||
⟨⊗⟩-reason {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
 | 
			
		||||
    with p ← aP s
 | 
			
		||||
    with (s' , (t₁ , s≼s')) ← m₁ s
 | 
			
		||||
    with q ← aQ s'
 | 
			
		||||
    with (s'' , (t₂ , s'≼s'')) ← m₂ s' = (P-Mono _ _ _ s'≼s'' p , q)
 | 
			
		||||
    with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
 | 
			
		||||
    (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user