Prove that foldr is monotonic when input lists are pairwise monotonic
This should help prove that "join" is monotonic Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
7905d106e2
commit
332b7616cf
30
Lattice.agda
30
Lattice.agda
|
@ -85,6 +85,20 @@ record IsSemilattice {a} (A : Set a)
|
|||
≼-refl : ∀ (a : A) → a ≼ a
|
||||
≼-refl a = ⊔-idemp a
|
||||
|
||||
≼-trans : ∀ {a₁ a₂ a₃ : A} → a₁ ≼ a₂ → a₂ ≼ a₃ → a₁ ≼ a₃
|
||||
≼-trans {a₁} {a₂} {a₃} a₁≼a₂ a₂≼a₃ =
|
||||
begin
|
||||
a₁ ⊔ a₃
|
||||
∼⟨ ≈-⊔-cong ≈-refl (≈-sym a₂≼a₃) ⟩
|
||||
a₁ ⊔ (a₂ ⊔ a₃)
|
||||
∼⟨ ≈-sym (⊔-assoc _ _ _) ⟩
|
||||
(a₁ ⊔ a₂) ⊔ a₃
|
||||
∼⟨ ≈-⊔-cong a₁≼a₂ ≈-refl ⟩
|
||||
a₂ ⊔ a₃
|
||||
∼⟨ a₂≼a₃ ⟩
|
||||
a₃
|
||||
∎
|
||||
|
||||
≼-cong : ∀ {a₁ a₂ a₃ a₄ : A} → a₁ ≈ a₂ → a₃ ≈ a₄ → a₁ ≼ a₃ → a₂ ≼ a₄
|
||||
≼-cong {a₁} {a₂} {a₃} {a₄} a₁≈a₂ a₃≈a₄ a₁⊔a₃≈a₃ =
|
||||
begin
|
||||
|
@ -118,11 +132,24 @@ module _ {a b} {A : Set a} {B : Set b}
|
|||
(lA : IsSemilattice A _≈₁_ _⊔₁_) (lB : IsSemilattice B _≈₂_ _⊔₂_) where
|
||||
|
||||
open IsSemilattice lA using () renaming (_≼_ to _≼₁_)
|
||||
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp)
|
||||
open IsSemilattice lB using () renaming (_≼_ to _≼₂_; ⊔-idemp to ⊔₂-idemp; ≼-trans to ≼₂-trans)
|
||||
|
||||
const-Mono : ∀ (x : B) → Monotonic _≼₁_ _≼₂_ (λ _ → x)
|
||||
const-Mono x _ = ⊔₂-idemp x
|
||||
|
||||
open import Data.List as List using (List; foldr; _∷_)
|
||||
open import Utils using (Pairwise; _∷_)
|
||||
|
||||
foldr-Mono : ∀ (l₁ l₂ : List A) (f : A → B → B) (b₁ b₂ : B) →
|
||||
Pairwise _≼₁_ l₁ l₂ → b₁ ≼₂ b₂ →
|
||||
(∀ b → Monotonic _≼₁_ _≼₂_ (λ a → f a b)) →
|
||||
(∀ a → Monotonic _≼₂_ _≼₂_ (f a)) →
|
||||
foldr f b₁ l₁ ≼₂ foldr f b₂ l₂
|
||||
foldr-Mono List.[] List.[] f b₁ b₂ _ b₁≼b₂ _ _ = b₁≼b₂
|
||||
foldr-Mono (x ∷ xs) (y ∷ ys) f b₁ b₂ (x≼y ∷ xs≼ys) b₁≼b₂ f-Mono₁ f-Mono₂ =
|
||||
≼₂-trans (f-Mono₁ (foldr f b₁ xs) x≼y)
|
||||
(f-Mono₂ y (foldr-Mono xs ys f b₁ b₂ xs≼ys b₁≼b₂ f-Mono₁ f-Mono₂))
|
||||
|
||||
record IsLattice {a} (A : Set a)
|
||||
(_≈_ : A → A → Set a)
|
||||
(_⊔_ : A → A → A)
|
||||
|
@ -146,6 +173,7 @@ record IsLattice {a} (A : Set a)
|
|||
; _≼_ to _≽_
|
||||
; _≺_ to _≻_
|
||||
; ≼-refl to ≽-refl
|
||||
; ≼-trans to ≽-trans
|
||||
)
|
||||
|
||||
FixedHeight : ∀ (h : ℕ) → Set a
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
module Utils where
|
||||
|
||||
open import Agda.Primitive using () renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Data.List using (List; []; _∷_; _++_)
|
||||
open import Data.List.Membership.Propositional using (_∈_)
|
||||
|
@ -43,3 +44,9 @@ All-x∈xs (x ∷ xs') = here refl ∷ map there (All-x∈xs xs')
|
|||
iterate : ∀ {a} {A : Set a} (n : ℕ) → (f : A → A) → A → A
|
||||
iterate 0 _ a = a
|
||||
iterate (suc n) f a = f (iterate n f a)
|
||||
|
||||
data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List A → List B → Set (a ⊔ℓ b ⊔ℓ c) where
|
||||
[] : Pairwise P [] []
|
||||
_∷_ : ∀ {x : A} {y : B} {xs : List A} {ys : List B} →
|
||||
P x y → Pairwise P xs ys →
|
||||
Pairwise P (x ∷ xs) (y ∷ ys)
|
||||
|
|
Loading…
Reference in New Issue
Block a user