Define interpretation of the sign lattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									be50c76cb1
								
							
						
					
					
						commit
						3859826293
					
				| @ -1,15 +1,19 @@ | |||||||
| module Analysis.Sign where | module Analysis.Sign where | ||||||
| 
 | 
 | ||||||
| open import Data.Nat using (suc) | open import Data.Integer using (ℤ; +_; -[1+_]) | ||||||
| open import Data.Product using (proj₁; _,_) | open import Data.Nat using (ℕ; suc; zero) | ||||||
|  | open import Data.Product using (Σ; proj₁; _,_) | ||||||
|  | open import Data.Sum using (inj₁; inj₂) | ||||||
| open import Data.Empty using (⊥; ⊥-elim) | open import Data.Empty using (⊥; ⊥-elim) | ||||||
|  | open import Data.Unit using (⊤; tt) | ||||||
| open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) | open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_) | ||||||
| open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst) | open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst) | ||||||
| open import Relation.Nullary using (yes; no) | open import Relation.Nullary using (¬_; yes; no) | ||||||
| 
 | 
 | ||||||
| open import Language | open import Language | ||||||
| open import Lattice | open import Lattice | ||||||
| open import Showable using (Showable; show) | open import Showable using (Showable; show) | ||||||
|  | open import Utils using (_⇒_; _∧_; _∨_) | ||||||
| import Analysis.Forward | import Analysis.Forward | ||||||
| 
 | 
 | ||||||
| data Sign : Set where | data Sign : Set where | ||||||
| @ -61,6 +65,7 @@ open AB.Plain 0ˢ using () | |||||||
|         ; fixedHeight to fixedHeightᵍ |         ; fixedHeight to fixedHeightᵍ | ||||||
|         ; _≼_ to _≼ᵍ_ |         ; _≼_ to _≼ᵍ_ | ||||||
|         ; _⊔_ to _⊔ᵍ_ |         ; _⊔_ to _⊔ᵍ_ | ||||||
|  |         ; _⊓_ to _⊓ᵍ_ | ||||||
|         ) |         ) | ||||||
| 
 | 
 | ||||||
| open IsLattice isLatticeᵍ using () | open IsLattice isLatticeᵍ using () | ||||||
| @ -106,6 +111,62 @@ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ | |||||||
| postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂) | postulate minus-Monoˡ : ∀ (s₂ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ → minus s₁ s₂) | ||||||
| postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) | postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) | ||||||
| 
 | 
 | ||||||
|  | ⟦_⟧ᵍ : SignLattice → Value → Set | ||||||
|  | ⟦_⟧ᵍ ⊥ᵍ _ = ⊥ | ||||||
|  | ⟦_⟧ᵍ ⊤ᵍ _ = ⊤ | ||||||
|  | ⟦_⟧ᵍ [ + ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ (suc n))) | ||||||
|  | ⟦_⟧ᵍ [ 0ˢ ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ zero)) | ||||||
|  | ⟦_⟧ᵍ [ - ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ -[1+ n ]) | ||||||
|  | 
 | ||||||
|  | ⟦⟧ᵍ-respects-≈ᵍ : ∀ {s₁ s₂ : SignLattice} → s₁ ≈ᵍ s₂ → ⟦ s₁ ⟧ᵍ ⇒ ⟦ s₂ ⟧ᵍ | ||||||
|  | ⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊥ᵍ-⊥ᵍ v bot = bot | ||||||
|  | ⟦⟧ᵍ-respects-≈ᵍ ≈ᵍ-⊤ᵍ-⊤ᵍ v top = top | ||||||
|  | ⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { + } { + } refl) v proof = proof | ||||||
|  | ⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { - } { - } refl) v proof = proof | ||||||
|  | ⟦⟧ᵍ-respects-≈ᵍ (≈ᵍ-lift { 0ˢ } { 0ˢ } refl) v proof = proof | ||||||
|  | 
 | ||||||
|  | ⟦⟧ᵍ-⊔ᵍ-∨ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∨ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊔ᵍ s₂ ⟧ᵍ | ||||||
|  | ⟦⟧ᵍ-⊔ᵍ-∨ {⊥ᵍ} x (inj₂ px₂) = px₂ | ||||||
|  | ⟦⟧ᵍ-⊔ᵍ-∨ {⊤ᵍ} x _ = tt | ||||||
|  | ⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x px | ||||||
|  |     with s₁ ≟ᵍ s₂ | ||||||
|  | ...   | no _ = tt | ||||||
|  | ...   | yes refl | ||||||
|  |         with px | ||||||
|  | ...       | inj₁ px₁ = px₁ | ||||||
|  | ...       | inj₂ px₂ = px₂ | ||||||
|  | ⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊥ᵍ} x (inj₁ px₁) = px₁ | ||||||
|  | ⟦⟧ᵍ-⊔ᵍ-∨ {[ s₁ ]ᵍ} {⊤ᵍ} x _ = tt | ||||||
|  | 
 | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ : ∀ {s₁ s₂ : Sign} → ¬ s₁ ≡ s₂ → ∀ {v} → ¬ ((⟦ [ s₁ ]ᵍ ⟧ᵍ ∧ ⟦ [ s₂ ]ᵍ ⟧ᵍ) v) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ())) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , (m , ())) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ ((n , refl) , (m , ())) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ ((n , refl) , (m , ())) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ())) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , (m , ())) | ||||||
|  | s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl) | ||||||
|  | 
 | ||||||
|  | ⟦⟧ᵍ-⊓ᵍ-∧ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∧ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊓ᵍ s₂ ⟧ᵍ | ||||||
|  | ⟦⟧ᵍ-⊓ᵍ-∧ {⊥ᵍ} x (bot , _) = bot | ||||||
|  | ⟦⟧ᵍ-⊓ᵍ-∧ {⊤ᵍ} x (_ , px₂) = px₂ | ||||||
|  | ⟦⟧ᵍ-⊓ᵍ-∧ {[ s₁ ]ᵍ} {[ s₂ ]ᵍ} x (px₁ , px₂) | ||||||
|  |     with s₁ ≟ᵍ s₂ | ||||||
|  | ...   | no s₁≢s₂ = s₁≢s₂⇒¬s₁∧s₂ s₁≢s₂ (px₁ , px₂) | ||||||
|  | ...   | yes refl = px₁ | ||||||
|  | ⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊥ᵍ} x (_ , bot) = bot | ||||||
|  | ⟦⟧ᵍ-⊓ᵍ-∧ {[ g₁ ]ᵍ} {⊤ᵍ} x (px₁ , _) = px₁ | ||||||
|  | 
 | ||||||
|  | latticeInterpretationᵍ : LatticeInterpretation isLatticeᵍ | ||||||
|  | latticeInterpretationᵍ = record | ||||||
|  |     { ⟦_⟧ = ⟦_⟧ᵍ | ||||||
|  |     ; ⟦⟧-respects-≈ = ⟦⟧ᵍ-respects-≈ᵍ | ||||||
|  |     ; ⟦⟧-⊔-∨ = ⟦⟧ᵍ-⊔ᵍ-∨ | ||||||
|  |     ; ⟦⟧-⊓-∧ = ⟦⟧ᵍ-⊓ᵍ-∧ | ||||||
|  |     } | ||||||
|  | 
 | ||||||
| module WithProg (prog : Program) where | module WithProg (prog : Program) where | ||||||
|     open Program prog |     open Program prog | ||||||
| 
 | 
 | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user