Add a Semilattice isntance for Products.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
1ee6682c1a
commit
3b29ee0f74
86
Lattice.agda
86
Lattice.agda
@ -99,7 +99,7 @@ module PreorderInstances where
|
||||
}
|
||||
}
|
||||
|
||||
module ForProd {a} {A B : Set a} {{ pA : Preorder A }} {{ pB : Preorder B }} where
|
||||
module ForProd {a} {A B : Set a} (pA : Preorder A) (pB : Preorder B) where
|
||||
open Eq
|
||||
|
||||
private
|
||||
@ -188,6 +188,74 @@ module SemilatticeInstances where
|
||||
}
|
||||
}
|
||||
|
||||
module ForProd {a} {A B : Set a} (sA : Semilattice A) (sB : Semilattice B) where
|
||||
private
|
||||
_≼₁_ = Semilattice._≼_ sA
|
||||
_≼₂_ = Semilattice._≼_ sB
|
||||
|
||||
pA = record { _≼_ = _≼₁_; isPreorder = Semilattice.isPreorder sA }
|
||||
pB = record { _≼_ = _≼₂_; isPreorder = Semilattice.isPreorder sB }
|
||||
|
||||
open PreorderInstances.ForProd pA pB
|
||||
open Eq
|
||||
open Data.Product
|
||||
|
||||
private
|
||||
_≼_ = Preorder._≼_ ProdPreorder
|
||||
|
||||
_⊔_ : A × B → A × B → A × B
|
||||
(a₁ , b₁) ⊔ (a₂ , b₂) = (Semilattice._⊔_ sA a₁ a₂ , Semilattice._⊔_ sB b₁ b₂)
|
||||
|
||||
⊔-assoc : (p₁ p₂ p₃ : A × B) → (p₁ ⊔ p₂) ⊔ p₃ ≡ p₁ ⊔ (p₂ ⊔ p₃)
|
||||
⊔-assoc (a₁ , b₁) (a₂ , b₂) (a₃ , b₃)
|
||||
rewrite Semilattice.⊔-assoc sA a₁ a₂ a₃
|
||||
rewrite Semilattice.⊔-assoc sB b₁ b₂ b₃ = refl
|
||||
|
||||
⊔-comm : (p₁ p₂ : A × B) → p₁ ⊔ p₂ ≡ p₂ ⊔ p₁
|
||||
⊔-comm (a₁ , b₁) (a₂ , b₂)
|
||||
rewrite Semilattice.⊔-comm sA a₁ a₂
|
||||
rewrite Semilattice.⊔-comm sB b₁ b₂ = refl
|
||||
|
||||
⊔-idemp : (p : A × B) → p ⊔ p ≡ p
|
||||
⊔-idemp (a , b)
|
||||
rewrite Semilattice.⊔-idemp sA a
|
||||
rewrite Semilattice.⊔-idemp sB b = refl
|
||||
|
||||
⊔-bound₁ : {p₁ p₂ p₃ : A × B} → p₁ ⊔ p₂ ≡ p₃ → p₁ ≼ p₃
|
||||
⊔-bound₁ {(a₁ , b₁)} {(a₂ , b₂)} {(a₃ , b₃)} p₁⊔p₂≡p₃ = (⊔-bound-a , ⊔-bound-b)
|
||||
where
|
||||
⊔-bound-a = proj₁ (Semilattice.⊔-bound sA a₁ a₂ a₃ (cong proj₁ p₁⊔p₂≡p₃))
|
||||
⊔-bound-b = proj₁ (Semilattice.⊔-bound sB b₁ b₂ b₃ (cong proj₂ p₁⊔p₂≡p₃))
|
||||
|
||||
⊔-bound₂ : {p₁ p₂ p₃ : A × B} → p₁ ⊔ p₂ ≡ p₃ → p₂ ≼ p₃
|
||||
⊔-bound₂ {(a₁ , b₁)} {(a₂ , b₂)} {(a₃ , b₃)} p₁⊔p₂≡p₃ = (⊔-bound-a , ⊔-bound-b)
|
||||
where
|
||||
⊔-bound-a = proj₂ (Semilattice.⊔-bound sA a₁ a₂ a₃ (cong proj₁ p₁⊔p₂≡p₃))
|
||||
⊔-bound-b = proj₂ (Semilattice.⊔-bound sB b₁ b₂ b₃ (cong proj₂ p₁⊔p₂≡p₃))
|
||||
|
||||
⊔-least : (p₁ p₂ p₃ : A × B) → p₁ ⊔ p₂ ≡ p₃ → ∀ (p₃' : A × B) → (p₁ ≼ p₃' × p₂ ≼ p₃') → p₃ ≼ p₃'
|
||||
⊔-least (a₁ , b₁) (a₂ , b₂) (a₃ , b₃) p₁⊔p₂≡p₃ (a₃' , b₃') (p₁≼p₃' , p₂≼p₃') = (⊔-least-a , ⊔-least-b)
|
||||
where
|
||||
⊔-least-a : a₃ ≼₁ a₃'
|
||||
⊔-least-a = Semilattice.⊔-least sA a₁ a₂ a₃ (cong proj₁ p₁⊔p₂≡p₃) a₃' (proj₁ p₁≼p₃' , proj₁ p₂≼p₃')
|
||||
|
||||
⊔-least-b : b₃ ≼₂ b₃'
|
||||
⊔-least-b = Semilattice.⊔-least sB b₁ b₂ b₃ (cong proj₂ p₁⊔p₂≡p₃) b₃' (proj₂ p₁≼p₃' , proj₂ p₂≼p₃')
|
||||
|
||||
ProdSemilattice : Semilattice (A × B)
|
||||
ProdSemilattice = record
|
||||
{ _≼_ = _≼_
|
||||
; _⊔_ = _⊔_
|
||||
; isSemilattice = record
|
||||
{ isPreorder = Preorder.isPreorder ProdPreorder
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idemp
|
||||
; ⊔-bound = λ x y z x⊓y≡z → (⊔-bound₁ x⊓y≡z , ⊔-bound₂ x⊓y≡z)
|
||||
; ⊔-least = ⊔-least
|
||||
}
|
||||
}
|
||||
|
||||
private module NatInstances where
|
||||
open Nat
|
||||
open NatProps
|
||||
@ -230,11 +298,11 @@ private module NatInstances where
|
||||
}
|
||||
}
|
||||
|
||||
ProdSemilattice : {a : Level} → {A B : Set a} → {{ Semilattice A }} → {{ Semilattice B }} → Semilattice (A × B)
|
||||
ProdSemilattice {a} {A} {B} {{slA}} {{slB}} = record
|
||||
{ _≼_ = λ (a₁ , b₁) (a₂ , b₂) → Semilattice._≼_ slA a₁ a₂ × Semilattice._≼_ slB b₁ b₂
|
||||
; _⊔_ = λ (a₁ , b₁) (a₂ , b₂) → (Semilattice._⊔_ slA a₁ a₂ , Semilattice._⊔_ slB b₁ b₂)
|
||||
; isSemilattice = record
|
||||
{
|
||||
}
|
||||
}
|
||||
-- ProdSemilattice : {a : Level} → {A B : Set a} → {{ Semilattice A }} → {{ Semilattice B }} → Semilattice (A × B)
|
||||
-- ProdSemilattice {a} {A} {B} {{slA}} {{slB}} = record
|
||||
-- { _≼_ = λ (a₁ , b₁) (a₂ , b₂) → Semilattice._≼_ slA a₁ a₂ × Semilattice._≼_ slB b₁ b₂
|
||||
-- ; _⊔_ = λ (a₁ , b₁) (a₂ , b₂) → (Semilattice._⊔_ slA a₁ a₂ , Semilattice._⊔_ slB b₁ b₂)
|
||||
-- ; isSemilattice = record
|
||||
-- {
|
||||
-- }
|
||||
-- }
|
||||
|
Loading…
Reference in New Issue
Block a user