Clean up some definitions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -608,7 +608,7 @@ record Graph : Set where
|
||||
}
|
||||
|
||||
module Tagged (noCycles : NoCycles) (total-⊔ : Total-⊔) (total-⊓ : Total-⊓) (𝓛 : Node → Σ Set FiniteHeightLattice) where
|
||||
open Basic noCycles total-⊔ total-⊓ using () renaming (_⊔_ to _⊔ᵇ_; _⊓_ to _⊓ᵇ_; ⊔-idemp to ⊔ᵇ-idemp; ⊔-comm to ⊔ᵇ-comm; ⊔-assoc to ⊔ᵇ-assoc)
|
||||
open Basic noCycles total-⊔ total-⊓ using () renaming (_⊔_ to _⊔ᵇ_; _⊓_ to _⊓ᵇ_; ⊔-idemp to ⊔ᵇ-idemp; ⊔-comm to ⊔ᵇ-comm; ⊔-assoc to ⊔ᵇ-assoc; _≼_ to _≼ᵇ_)
|
||||
|
||||
Elem : Set
|
||||
Elem = Σ Node λ n → (proj₁ (𝓛 n))
|
||||
@@ -630,12 +630,15 @@ record Graph : Set where
|
||||
_⊔_ : Elem → Elem → Elem
|
||||
_⊔_ e₁ e₂
|
||||
using n₁ ← proj₁ e₁ using n₂ ← proj₁ e₂
|
||||
with n' ← n₁ ⊔ᵇ n₂
|
||||
with n' ≟ n₁ | n' ≟ n₂
|
||||
... | yes refl | yes refl = (n' , FiniteHeightLattice._⊔_ (proj₂ (𝓛 n')) (proj₂ e₁) (proj₂ e₂))
|
||||
... | yes refl | _ = (n' , proj₂ e₁)
|
||||
... | _ | yes refl = (n' , proj₂ e₂)
|
||||
... | no _ | no _ = (n' , FiniteHeightLattice.⊥ (proj₂ (𝓛 n')))
|
||||
using n' ← n₁ ⊔ᵇ n₂ = (n' , select n' e₁ e₂)
|
||||
where
|
||||
select : ∀ n' e₁ e₂ → proj₁ (𝓛 n')
|
||||
select n' (n₁ , l₁) (n₂ , l₂)
|
||||
with n' ≟ n₁ | n' ≟ n₂
|
||||
... | yes refl | yes refl = FiniteHeightLattice._⊔_ (proj₂ (𝓛 n')) l₁ l₂
|
||||
... | yes refl | _ = l₁
|
||||
... | _ | yes refl = l₂
|
||||
... | no _ | no _ = FiniteHeightLattice.⊥ (proj₂ (𝓛 n'))
|
||||
|
||||
⊔-idemp : ∀ e → (e ⊔ e) ≈ e
|
||||
⊔-idemp (n , l) rewrite ⊔ᵇ-idemp n
|
||||
@@ -692,9 +695,9 @@ record Graph : Set where
|
||||
|
||||
-- A key simplifying property is that notionally, only the
|
||||
-- "elements with the final tag" in the expression matter. All
|
||||
-- others are subsubed. If none of the elments have the final tag,
|
||||
-- others are subsumed. If none of the elments have the final tag,
|
||||
-- we've found a better supremum and the second element will be ⊥.
|
||||
Expr-final : ∀ e → let n = eval _⊔ᵇ_ (mapᵉ proj₁ e)
|
||||
Expr-final : ∀ e → let n = proj₁ (eval _⊔_ e)
|
||||
⊥ⁿ = FiniteHeightLattice.⊥ (proj₂ (𝓛 n))
|
||||
_⊔ⁿ_ = FiniteHeightLattice._⊔_ (proj₂ (𝓛 n))
|
||||
in (eval _⊔_ e) ≈ (n , Maybe.maybe′ (eval _⊔ⁿ_) ⊥ⁿ (filterᵉ n e))
|
||||
@@ -704,8 +707,8 @@ record Graph : Set where
|
||||
⊔-assoc e₁@(n₁ , l₁) e₂@(n₂ , l₂) e₃@(n₃ , l₃)
|
||||
using exprˡ ← (((` e₁) ⊔ᵉ (` e₂)) ⊔ᵉ (` e₃))
|
||||
using exprʳ ← ((` e₁) ⊔ᵉ ((` e₂) ⊔ᵉ (` e₃)))
|
||||
with nˡ ← eval _⊔ᵇ_ (mapᵉ proj₁ exprˡ) in pˡ
|
||||
with nʳ ← eval _⊔ᵇ_ (mapᵉ proj₁ exprʳ) in pʳ
|
||||
with nˡ ← proj₁ (eval _⊔_ exprˡ) in pˡ
|
||||
with nʳ ← proj₁ (eval _⊔_ exprʳ) in pʳ
|
||||
with final₁ ← Expr-final exprˡ
|
||||
with final₂ ← Expr-final exprʳ
|
||||
rewrite pˡ rewrite pʳ
|
||||
|
||||
Reference in New Issue
Block a user