Clean up imports a bit
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									6cd37a212f
								
							
						
					
					
						commit
						4a90a57388
					
				
							
								
								
									
										13
									
								
								Lattice.agda
									
									
									
									
									
								
							
							
						
						
									
										13
									
								
								Lattice.agda
									
									
									
									
									
								
							| @ -3,20 +3,13 @@ module Lattice where | ||||
| open import Equivalence | ||||
| import Chain | ||||
| 
 | ||||
| import Data.Nat.Properties as NatProps | ||||
| open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst) | ||||
| open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) | ||||
| open import Relation.Binary.Core using (_Preserves_⟶_ ) | ||||
| open import Relation.Nullary using (Dec; ¬_; yes; no) | ||||
| open import Data.Nat as Nat using (ℕ; _≤_; _+_; suc) | ||||
| open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) | ||||
| open import Relation.Nullary using (Dec; ¬_) | ||||
| open import Data.Nat as Nat using (ℕ) | ||||
| open import Data.Product using (_×_; Σ; _,_) | ||||
| open import Data.Sum using (_⊎_; inj₁; inj₂) | ||||
| open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_) | ||||
| open import Function.Definitions using (Injective) | ||||
| open import Data.Empty using (⊥) | ||||
| 
 | ||||
| absurd : ∀ {a} {A : Set a} →  ⊥ → A | ||||
| absurd () | ||||
| 
 | ||||
| IsDecidable : ∀ {a} {A : Set a} (R : A → A → Set a) → Set a | ||||
| IsDecidable {a} {A} R = ∀ (a₁ a₂ : A) → Dec (R a₁ a₂) | ||||
|  | ||||
| @ -8,11 +8,11 @@ module Lattice.Prod {a} {A B : Set a} | ||||
| 
 | ||||
| open import Data.Nat using (ℕ; _≤_; _+_; suc) | ||||
| open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) | ||||
| open import Equivalence | ||||
| open import Data.Empty using (⊥-elim) | ||||
| open import Relation.Binary.Core using (_Preserves_⟶_ ) | ||||
| open import Relation.Binary.Definitions | ||||
| open import Relation.Binary.PropositionalEquality using (sym; subst) | ||||
| open import Relation.Nullary using (¬_; yes; no) | ||||
| open import Equivalence | ||||
| import Chain | ||||
| 
 | ||||
| open IsLattice lA using () renaming | ||||
| @ -141,7 +141,7 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_) | ||||
|         unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl)) | ||||
|         unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} (((d₁ , d₂) , (a₁⊔d₁≈a , b₁⊔d₂≈b)) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂) | ||||
|             with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂ | ||||
|         ...   | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = absurd (a₁b₁̷≈ab (a₁≈a , b₁≈b)) | ||||
|         ...   | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = ⊥-elim (a₁b₁̷≈ab (a₁≈a , b₁≈b)) | ||||
|         ...   | no a₁̷≈a  | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = | ||||
|                 ((suc n₁ , n₂) , ((step₁ ((d₁ , a₁⊔d₁≈a) , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂))) | ||||
|         ...   | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user