Prove that 'first' presrves equality

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-02-25 18:08:03 -08:00
parent d6064ff752
commit 53a08b8f79

View File

@ -16,20 +16,23 @@ module Lattice.FiniteValueMap (A : Set) (B : Set)
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open import Data.List using (List; length; []; _∷_) open import Data.List using (List; length; []; _∷_)
open import Utils using (Unique; push; empty) open import Data.Product using (Σ; proj₁; proj₂; _×_)
open import Data.Empty using (⊥-elim)
open import Utils using (Unique; push; empty; All¬-¬Any)
open import Data.Product using (_,_) open import Data.Product using (_,_)
open import Data.List.Properties using (∷-injectiveʳ) open import Data.List.Properties using (∷-injectiveʳ)
open import Data.List.Relation.Unary.All using (All) open import Data.List.Relation.Unary.All using (All)
open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Relation.Nullary using (¬_) open import Relation.Nullary using (¬_)
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB using (subset-impl) open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional)
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public
module IterProdIsomorphism where module IterProdIsomorphism where
open import Data.Unit using (; tt) open import Data.Unit using (; tt)
open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ) open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv)
open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd) open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd)
open IsLattice lB using () renaming (≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym)
from : {ks : List A} FiniteMap ks IterProd (length ks) from : {ks : List A} FiniteMap ks IterProd (length ks)
from {[]} (([] , _) , _) = tt from {[]} (([] , _) , _) = tt
@ -54,6 +57,9 @@ module IterProdIsomorphism where
_≈ᵐ_ : {ks : List A} FiniteMap ks FiniteMap ks Set _≈ᵐ_ : {ks : List A} FiniteMap ks FiniteMap ks Set
_≈ᵐ_ {ks} = _≈_ ks _≈ᵐ_ {ks} = _≈_ ks
_⊆ᵐ_ : {ks₁ ks₂ : List A} FiniteMap ks₁ FiniteMap ks₂ Set
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
_≈ⁱᵖ_ : {ks : List A} IterProd (length ks) IterProd (length ks) Set _≈ⁱᵖ_ : {ks : List A} IterProd (length ks) IterProd (length ks) Set
_≈ⁱᵖ_ {ks} = IP._≈_ (length ks) _≈ⁱᵖ_ {ks} = IP._≈_ (length ks)
@ -91,3 +97,42 @@ module IterProdIsomorphism where
m₂⊆m₁ k' v' (there k',v'∈kvs'₂) = m₂⊆m₁ k' v' (there k',v'∈kvs'₂) =
let (v'' , (v'≈v'' , k',v''∈kvs'₁)) = kvs'₂⊆kvs'₁ k' v' k',v'∈kvs'₂ let (v'' , (v'≈v'' , k',v''∈kvs'₁)) = kvs'₂⊆kvs'₁ k' v' k',v'∈kvs'₂
in (v'' , (v'≈v'' , there k',v''∈kvs'₁)) in (v'' , (v'≈v'' , there k',v''∈kvs'₁))
private
first-key-in-map : {k : A} {ks : List A} (fm : FiniteMap (k ks)) Σ B (λ v (k , v) proj₁ fm)
first-key-in-map (((k , v) _ , _) , refl) = (v , here refl)
from-first-value : {k : A} {ks : List A} (fm : FiniteMap (k ks)) proj₁ (from fm) ≈₂ proj₁ (first-key-in-map fm)
from-first-value {k} {ks} (((k , v) _ , push _ _) , refl) = IsLattice.≈-refl lB
pop : {k : A} {ks : List A} FiniteMap (k ks) FiniteMap ks
pop (((_ kvs') , push _ ukvs') , refl) = ((kvs' , ukvs') , refl)
pop-≈ : {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ks)) fm₁ ≈ᵐ fm₂ pop fm₁ ≈ᵐ pop fm₂
pop-≈ {k} {ks} fm₁ fm₂ (fm₁⊆fm₂ , fm₂⊆fm₁) = (narrow fm₁⊆fm₂ , narrow fm₂⊆fm₁)
where
narrow₁ : {fm₁ fm₂ : FiniteMap (k ks)} fm₁ ⊆ᵐ fm₂ pop fm₁ ⊆ᵐ fm₂
narrow₁ {(_ _ , push _ _) , refl} kvs₁⊆kvs₂ k' v' k',v'∈kvs'₁ = kvs₁⊆kvs₂ k' v' (there k',v'∈kvs'₁)
narrow₂ : {fm₁ : FiniteMap ks} {fm₂ : FiniteMap (k ks)} fm₁ ⊆ᵐ fm₂ fm₁ ⊆ᵐ pop fm₂
narrow₂ {fm₁} {fm₂ = (_ kvs'₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈kvs'₁
with kvs₁⊆kvs₂ k' v' k',v'∈kvs'₁
... | (v'' , (v'≈v'' , here refl)) rewrite sym (proj₂ fm₁) = ⊥-elim (All¬-¬Any k≢ks (forget {m = proj₁ fm₁} k',v'∈kvs'₁))
... | (v'' , (v'≈v'' , there k',v'∈kvs'₂)) = (v'' , (v'≈v'' , k',v'∈kvs'₂))
narrow : {fm₁ fm₂ : FiniteMap (k ks)} fm₁ ⊆ᵐ fm₂ pop fm₁ ⊆ᵐ pop fm₂
narrow {fm₁} {fm₂} x = narrow₂ {pop fm₁} (narrow₁ {fm₂ = fm₂} x)
from-rest : {k : A} {ks : List A} (fm : FiniteMap (k ks)) proj₂ (from fm) from (pop fm)
from-rest (((_ kvs') , push _ ukvs') , refl) = refl
from-preserves-≈ : {ks : List A} (fm₁ fm₂ : FiniteMap ks) fm₁ ≈ᵐ fm₂ (_≈ⁱᵖ_ {ks}) (from fm₁) (from fm₂)
from-preserves-≈ {[]} (([] , _) , _) (([] , _) , _) _ = IsEquivalence.≈-refl ≈ᵘ-equiv
from-preserves-≈ {k ks'} fm₁@(m₁ , _) fm₂@(m₂ , _) fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | fv₁≈v₁ | fv₂≈v₂
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
rewrite from-rest fm₁ rewrite from-rest fm₂
= (≈₂-trans fv₁≈v₁ (≈₂-trans v₁≈v₁' (≈₂-sym fv₂≈v₂)) , from-preserves-≈ (pop fm₁) (pop fm₂) (pop-≈ fm₁ fm₂ fm₁≈fm₂))